书签 分享 收藏 举报 版权申诉 / 46
上传文档赚钱

类型第八章 第2节 简单几何体的表面积和体积.pptx

  • 上传人(卖家):LY520
  • 文档编号:375122
  • 上传时间:2020-03-16
  • 格式:PPTX
  • 页数:46
  • 大小:4.77MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《第八章 第2节 简单几何体的表面积和体积.pptx》由用户(LY520)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    第八章 第2节 简单几何体的表面积和体积 第八 简单 几何体 表面积 体积 下载 _三轮冲刺_高考专区_数学_高中
    资源描述:

    1、第2节 简单几何体的表面积和体积,最新考纲 了解球、棱柱、棱锥、台的表面积和体积的计算公式.,知 识 梳 理,1.多面体的表(侧)面积,多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.,2.圆柱、圆锥、圆台的侧面展开图及侧面积公式,2rl,rl,(r1r2)l,3.简单几何体的表面积与体积公式,S底h,4R2,微点提醒,基 础 自 测,1.判断下列结论正误(在括号内打“”或“”),(1)锥体的体积等于底面面积与高之积.( ) (2)两个球的体积之比等于它们的半径比的平方.( ) (3)台体的体积可转化为两个锥体的体积之差.( ),解析 (1)锥体的

    2、体积等于底面面积与高之积的三分之一,故不正确. (2)球的体积之比等于半径比的立方,故不正确. 答案 (1) (2) (3) (4),2.(必修2P44讲解引申改编)已知圆锥的表面积等于12 cm2,其侧面展开图是一个半圆,则底面圆的半径为( ),解析 由题意,得S表r2rlr2r2r3r212,解得r24,所以r2(cm). 答案 B,3.(必修2P50A1改编)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱的体积比V球V柱为( ) A.12 B.23 C.34 D.13,答案 B,4.(2016全国卷)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ),答案 A,5.(201

    3、7全国卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ),解析 如图画出圆柱的轴截面ABCD,O为球心.,答案 B,6.(2018浙江卷改编)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)为_.,答案 6,考点一 简单几何体的表面积,【例1】 (1)(2019南昌模拟)一个四棱锥的侧棱长都相等,底面是正方形,其主视图如图所示,则该四棱锥的侧面积是( ),(2)(2018洛阳模拟)某几何体的三视图如图所示,则其表面积为( ),解析 (1)因为四棱锥的侧棱长都相等,底面是正方形,所以该四棱锥为正四棱锥,如图. 由题意知底面正方形的

    4、边长为2,正四棱锥的高为2,,(2)由三视图可知该几何体由一个圆柱与四分之一个球组合而成. 圆柱的底面半径为1,高为3,球的半径为1,,答案 (1)B (2)B,规律方法 1.由几何体的三视图求其表面积:(1)关键是分析三视图确定几何体中各元素之间的位置关系及度量大小.(2)还原几何体的直观图,套用相应的面积公式. 2.(1)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. (2)旋转体的表面积问题注意其侧面展开图的应用.,【训练1】 (1)(2019西安模拟)如图,网格纸上正方形小格的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( ),A.20 B.24

    5、 C.28 D.32,(2)(2018烟台二模)某几何体的三视图如图所示,其中俯视图右侧曲线为半圆弧,则几何体的表面积为( ),解析 (1)由三视图知,该几何体由一圆锥和一个圆柱构成的组合体,,故几何体的表面积S154928.,答案 (1)C (2)A,考点二 简单几何体的体积 多维探究 角度1 以三视图为背景的几何体的体积,【例21】 (2019河北衡水中学调研)某几何体的三视图如图所示,则该几何体的体积为( ),答案 A,角度2 简单几何体的体积 【例22】 (2018天津卷)已知正方体ABCDA1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如

    6、图),则四棱锥MEFGH的体积为_.,角度3 不规则几何体的体积 【例23】 如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且ADE,BCF均为正三角形,EFAB,EF2,则该多面体的体积为( ),解析 如图,分别过点A,B作EF的垂线,垂足分别为G,H,连接DG,CH,,答案 A,规律方法 1.(直接法)规则几何体:对于规则几何体,直接利用公式计算即可.若已知三视图求体积,应注意三视图中的垂直关系在几何体中的位置,确定几何体中的线面垂直等关系,进而利用公式求解. 2.(割补法)不规则几何体:当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体

    7、积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体. 3.(等积法)三棱锥:利用三棱锥的“等积性”可以把任一个面作为三棱锥的底面.(1)求体积时,可选择“容易计算”的方式来计算;(2)利用“等积性”可求“点到面的距离”,关键是在面中选取三个点,与已知点构成三棱锥.,(2)某几何体的三视图如图所示,则该几何体的体积为( ),又平面BB1C1C平面ABC,平面BB1C1平面ABCBC,ADBC,AD平面ABC,由面面垂直的性质定理可得AD平面BB1C1C,即AD为三棱锥AB1DC1的底面B1DC1上的高,,(2)该几何体为一个半圆柱中间挖去

    8、一个四面体,,答案 (1)C (2)A,考点三 多面体与球的切、接问题 典例迁移,【例3】 (经典母题)(2016全国卷)在封闭的直三棱柱ABCA1B1C1内有一个体积为V的球.若ABBC,AB6,BC8,AA13,则V的最大值是( ),解析 由ABBC,AB6,BC8,得AC10. 要使球的体积V最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面ABC的内切圆的半径为r.,2r43,不合题意. 球与三棱柱的上、下底面相切时,球的半径R最大.,答案 B,【迁移探究1】 若本例中的条件变为“直三棱柱ABCA1B1C1的6个顶点都在球O的球面上”,若AB3,AC4,ABAC,AA112,

    9、求球O的表面积.,解 将直三棱柱补形为长方体ABECA1B1E1C1, 则球O是长方体ABECA1B1E1C1的外接球. 体对角线BC1的长为球O的直径.,故S球4R2169.,【迁移探究2】 若将题目的条件变为“如图所示是一个几何体的三视图”,试求该几何体外接球的表面积.,规律方法 1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题. 2.若球面上四点P,A,B,C中PA,PB,PC两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决

    10、外接问题.,【训练3】 (2019广州模拟)三棱锥PABC中,平面PAC平面ABC,ABAC,PAPCAC2,AB4,则三棱锥PABC的外接球的表面积为( ),答案 D,思维升华 1.转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法. 2.求体积的两种方法:(1)割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.(2)等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用

    11、来求解几何图形的高或几何体的高.,易错防范 1.求组合体的表面积时:组合体的衔接部分的面积问题易出错. 2.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误. 3.底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.,直观想象简单几何体的外接球与内切球问题,1.直观想象主要表现为利用几何图形描述问题,借助几何直观理解问题,运用空间想象认识事物,解决与球有关的问题对该素养有较高的要求. 2.简单几何体外接球问题是立体几何中的难点和重要的考点,此类问题实质是解决球的半径长或确定球心O的位置问题,其中球心的确定是关键.,类型1 外接

    12、球的问题 1.必备知识: (1)简单多面体外接球的球心的结论. 结论1:正方体或长方体的外接球的球心是其体对角线的中点. 结论2:正棱柱的外接球的球心是上下底面中心的连线的中点. 结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点. (2)构造正方体或长方体确定球心. (3)利用球心O与截面圆圆心O1的连线垂直于截面圆及球心O与弦中点的连线垂直于弦的性质,确定球心. 2.方法技巧:几何体补成正方体或长方体.,【例11】 某几何体的三视图如图所示,则该几何体的外接球的表面积为( ),A.25 B.26 C.32 D.36,易知AD为三棱锥ABCD的外接球的直径.设球的半径为R,则由勾股定理得4R2AB24r232,故该几何体的外接球的表面积为4R232. 答案 C,A.3 B.4 C.5 D.6,答案 C,答案 B,类型2 内切球问题 1.必备知识: (1)内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等. (2)正多面体的内切球和外接球的球心重合. (3)正棱锥的内切球和外接球球心都在高线上,但不一定重合. 2.方法技巧:体积分割是求内切球半径的通用做法.,

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:第八章 第2节 简单几何体的表面积和体积.pptx
    链接地址:https://www.163wenku.com/p-375122.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库