书签 分享 收藏 举报 版权申诉 / 36
上传文档赚钱

类型第八章 第1节 简单几何体的结构、三视图和直观图.pptx

  • 上传人(卖家):LY520
  • 文档编号:375121
  • 上传时间:2020-03-16
  • 格式:PPTX
  • 页数:36
  • 大小:3.11MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《第八章 第1节 简单几何体的结构、三视图和直观图.pptx》由用户(LY520)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    第八章 第1节 简单几何体的结构、三视图和直观图 第八 简单 几何体 结构 视图 直观图 下载 _三轮冲刺_高考专区_数学_高中
    资源描述:

    1、,第1节 简单几何体的结构、三视图和直观图,最新考纲 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图;3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.,知 识 梳 理,1.简单几何体的结构特征 (1)多面体的结构特征,平行,全等,平行,相似,平行且相等,一点,一点,平行四边形,三角形,梯形,(2)旋转体的结构特征,垂直,一点,一点,矩形,等腰三角形,等腰梯形,圆,矩形,扇形,

    2、扇环,2.直观图,简单几何体的直观图常用_画法来画,其规则是: (1)在已知图形中建立直角坐标系xOy.画直观图时,它们分别对应x轴和y轴,两轴交于点O,使xOy _,它们确定的平面表示水平平面. (2)已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于_和_的线段 .,斜二测,45,x轴,y轴,不变,3.三视图,(1)三视图的名称 几何体的三视图包括_、 _ 、 _. (2)三视图的画法 画三视图时,重叠的线只画一条,挡住的线要画成虚线. 三视图的主视图、左视图、俯视图分别是从几何体的_方、 _方、 _方观察几何体得到的正投影图. 观察简单组合体是由哪几个简单几何体组成的,并注意它们

    3、的组成方式,特别是它们的交线位置.,主视图,左视图,俯视图,正前,正左,正上,微点提醒,1.常见旋转体的三视图 (1)球的三视图都是半径相等的圆. (2)水平放置的圆锥的主视图和左视图均为全等的等腰三角形. (3)水平放置的圆台的主视图和左视图均为全等的等腰梯形. (4)水平放置的圆柱的主视图和左视图均为全等的矩形. 2.在绘制三视图时,分界线和可见轮廓线都用实线画出,被遮挡的部分的轮廓线用虚线表示出来,即“眼见为实、不见为虚”.在三视图的判断与识别中要特别注意其中的虚线.,基 础 自 测,1.判断下列结论正误(在括号内打“”或“”),(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.

    4、( ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( ) (3)用斜二测画法画水平放置的A时,若A的两边分别平行于x轴和y轴,且A90,则在直观图中,A45.( ) (4)正方体、球、圆锥各自的三视图中,三视图均相同.( ),解析 (1)反例:由两个平行六面体上下组合在一起的图形满足条件,但不是棱柱.,(2)反例:如图所示的图形满足条件但不是棱锥.,(3)用斜二测画法画水平放置的A时,把x,y轴画成相交成45或135,平行于x轴的线段还平行于x轴,平行于y轴的线段还平行于y轴,所以A也可能为135.,(4)球的三视图均相同,而圆锥的主视图和左视图相同,且为等腰三角形, 其俯视图

    5、为圆心和圆,正方体的三视图不一定相同. 答案 (1) (2) (3) (4),2.(必修2P6B2改编)如图,长方体ABCDABCD被截去一部分,其中EHAD.剩下的几何体是( ),A.棱台 B.四棱柱 C.五棱柱 D.六棱柱 解析 由几何体的结构特征,剩下的几何体为五棱柱. 答案 C,3.(必修2P8讲解引申改编)用斜二测画法画水平放置的矩形的直观图,则直观图的面积与原矩形的面积之比为( ),答案 D,4.(2019合肥一中月考)如图为某个几何体的三视图,根据三视图可以判断这个几何体为( ),A.圆锥 B.三棱椎 C.三棱柱 D.三棱台 答案 C,5.(2018全国卷)中国古建筑借助榫卯将木

    6、构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( ),解析 由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A. 答案 A,6.(2018衡水月考)如图所示,图是图表示的几何体的三视图,其中图是_,图是_,图是_(写出视图名称).,解析 观察几何体的结构特征,不难发现其下层长为两个小长方体的长,宽为两个小长方体的宽,高为两个小长方体的高.所以主视图应为,左视图为,俯视图为. 答案 主视图 左视图 俯视图,考点一 简单几何体的结

    7、构特征,【例1】 (1)给出下列命题:,在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; 直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥; 棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确命题的个数是( ) A.0 B.1 C.2 D.3,(2)给出下列命题: 棱柱的侧棱都相等,侧面都是全等的平行四边形; 在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱; 存在每个面都是直角三角形的四面体; 棱台的侧棱延长后交于一点. 其中正确命题的序号是_.,解析 (1)不一定,只有当这两点的连线平行于轴时才是母线;不一定,当以斜边所在直线为旋转轴时,

    8、其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.,(2)不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;正确,如图,正方体ABCDA1B1C1D1中的三棱锥C1ABC,四个面都是直角三角形;正确,由棱台的概念可知.,答案 (1)A (2),规律方法 1.关于简单几何体的结构特征辨析关键是紧扣各种简单几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一个反例

    9、. 2.圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系. 3.既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.,【训练1】 下列命题正确的是( ),A.两个面平行,其余各面都是梯形的多面体是棱台 B.两个面平行且相似,其余各面都是梯形的多面体是棱台 C.以直角梯形的一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台 D.用平面截圆柱得到的截面只能是圆和矩形,解析 如图所示,可排除A,B选项.只有截面与圆柱的母线平行或垂直,则截得的截面为矩形或圆,否则为椭圆或椭圆的一部分.,答案 C,考点二 简单

    10、几何体的三视图 多维探究 角度1 由简单几何体的直观图判断三视图 【例21】 (2018黄山一模)将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的左视图为( ),解析 截去两个三棱锥后的几何体的左视图可以看见的实线段为AD1,AD,DD1,D1B1,AB1,而线段B1C被遮住,在左视图中为虚线,所以左视图为选项B中的图形. 答案 B,角度2 由三视图判断几何体 【例22】 (1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( ),A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱,(2)(2018全国卷)某圆柱的高为2,底面周长

    11、为16,其三视图如图.圆柱表面上的点M在主视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( ),解析 (1)由题知,该几何体的三视图为一个三角形、两个四边形,经分析可知该几何体为三棱柱.,答案 (1)B (2)B,规律方法 1.由直观图确定三视图,一要根据三视图的含义及画法和摆放规则确认.二要熟悉常见几何体的三视图. 2.由三视图还原到直观图的思路 (1)根据俯视图确定几何体的底面. (2)根据主视图或左视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置. (3)确定几何体的直观图形状.,【训练2】 (1)(2

    12、018北京卷)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( ),A.1 B.2 C.3 D.4,(2)(2019上饶模拟)如图,在底面边长为1,高为2的正四棱柱ABCDA1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥PBCD的主视图与左视图的面积之和为( ),A.1 B.2 C.3 D.4,解析 (1)在正方体中作出该几何体的直观图,记为四棱锥PABCD,如图,由图可知在此四棱锥的侧面中,直角三角形的个数为3,故选C.,(2)设点P在平面A1ADD1的射影为P,在平面C1CDD1的射影为P,如图所示.,三棱锥PBCD的主视图与左视图分别为PAD与PCD,,答

    13、案 (1)C (2)B,考点三 简单几何体的直观图 【例3】 已知正三角形ABC的边长为a,那么ABC的平面直观图ABC的面积为( ),解析 如图所示的实际图形和直观图.,答案 D,规律方法 1.画几何体的直观图一般采用斜二测画法,其规则可以用“斜”(两坐标轴成45或135)和“二测”(平行于y轴的线段长度减半,平行于x轴和z轴的线段长度不变)来掌握.,【训练3】 如果一个水平放置的图形的斜二测直观图是一个底角为45,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ),解析 恢复后的原图形为一直角梯形,,答案 A,思维升华 1.画三视图的三个原则: (1)画法规则:“长对正,宽相等,高平齐”. (2)摆放规则:左视图在主视图的右侧,俯视图在主视图的正下方. (3)实虚线的画法规则:可见轮廓线和棱用实线画出,不可见线和棱用虚线画出. 2.棱台和圆台是分别用平行于棱锥和圆锥的底面的平面截棱锥和圆锥后得到的,所以在解决棱台和圆台的相关问题时,常“还台为锥”,体现了转化的数学思想.,易错防范 1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点. 2.简单几何体不同放置时其三视图不一定相同. 3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视实虚线的画法.,

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:第八章 第1节 简单几何体的结构、三视图和直观图.pptx
    链接地址:https://www.163wenku.com/p-375121.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库