书签 分享 收藏 举报 版权申诉 / 34
上传文档赚钱

类型第四章 第3节 两角和与差及二倍角的三角函数.pptx

  • 上传人(卖家):LY520
  • 文档编号:375104
  • 上传时间:2020-03-16
  • 格式:PPTX
  • 页数:34
  • 大小:3.74MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《第四章 第3节 两角和与差及二倍角的三角函数.pptx》由用户(LY520)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    第四章 第3节 两角和与差及二倍角的三角函数 第四 二倍 三角函数 下载 _三轮冲刺_高考专区_数学_高中
    资源描述:

    1、第3节 两角和与差及二倍角的三角函数,最新考纲 1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).,知 识 梳 理,1.两角和与差的正弦、余弦和正切公式,sin()_. cos()_.,sin cos cos sin ,cos cos sin sin ,2.二倍角的正弦、余弦、正切公式,sin 2_. cos 2_.,2sin co

    2、s ,cos2sin2,2cos21,12sin2,微点提醒,1.tan tan tan()(1tan tan ).,基 础 自 测,1.判断下列结论正误(在括号内打“”或“”),(1)两角和与差的正弦、余弦公式中的角,是任意的.( ) (2)存在实数,使等式sin()sin sin 成立.( ),(4)存在实数,使tan 22tan .( ),答案 (1) (2) (3) (4),答案 C,答案 B,5.(2019南昌一模)已知角的终边经过点P(sin 47,cos 47),则sin(13)( ),解析 由三角函数定义,sin cos 47,cos sin 47, 则sin(13)sin c

    3、os 13cos sin 13 cos 47cos 13sin 47sin 13,答案 A,考点一 三角函数式的化简,【例1】 (1)化简:sin()cos()cos()sin()_.,解析 (1)sin()cos()cos()sin() sin()cos ()cos()sin() sin()()sin().,答案 (1)sin() (2)cos ,规律方法 1.三角函数式的化简要遵循“三看”原则:一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;三看结构特征,找到变形的方向,常见的有“遇到分式要通分”、“遇到根式一般要升幂”

    4、等. 2.化简三角函数式的常见方法有弦切互化,异名化同名,异角化同角,降幂与升幂等.,【训练1】 (1)cos()cos sin()sin ( ),A.sin(2) B.sin C.cos(2) D.cos ,解析 (1)cos()cos sin()sin cos()cos .,考点二 三角函数式的求值 多维探究 角度1 给角(值)求值,求cos 2的值; 求tan()的值.,因为,为锐角,所以(0,).,因此tan()2.,角度2 给值求角,由()得cos cos(),规律方法 1.“给角求值”、“给值求值”问题求解的关键在于“变角”,使其角相同或具有某种关系,借助角之间的联系寻找转化方法.

    5、,A.1 B.2 C.1 D.2,cos cos()cos()cos sin()sin ,考点三 三角恒等变换的简单应用,(1)求函数f(x)的最小正周期;,因为图像关于直线x对称,,规律方法 1.进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形使用.,(1)求f(x)的最小正周期;,思维升华 1.重视三角函数的“三变”:“三变”是指“变角、变名、变式”. (1)变角:对角的分拆要尽可能化成同角、特殊角;(2)变名:尽可能减少函数名称;(3)变式:对式子变形一般要尽可能有理化、整式化、降低次数等. 2.在解决求值、化简、证明问题时,一般是观察角、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.,易错防范 1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升幂、降幂的灵活运用,要注意“1”的各种变通.,3.在三角求值时,往往要借助角的范围确定三角函数值的符号或所求角的三角函数的名称.,

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:第四章 第3节 两角和与差及二倍角的三角函数.pptx
    链接地址:https://www.163wenku.com/p-375104.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库