第三章 第1节 变化率与导数、导数的计算.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第三章 第1节 变化率与导数、导数的计算.pptx》由用户(LY520)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第三章 第1节 变化率与导数、导数的计算 第三 变化 导数 计算 下载 _三轮冲刺_高考专区_数学_高中
- 资源描述:
-
1、,第1节 变化率与导数、导数的计算,知 识 梳 理,1.函数yf(x)在xx0处的导数,(2)几何意义:函数f(x)在点x0处的导数f(x0)的几何意义是在曲线yf(x)上点(x0,f(x0)处的切线的_.相应地,切线方程为_.,斜率,yy0f(x0)(xx0),(1)定义:当x1趋于x0,即x趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数yf(x)在x0点的瞬时变化率.在数学中,称瞬时变化率为函数yf(x)在x0点的导数,通常用符号f(x0)表示,记作,0,3.基本初等函数的导数公式,x1,cos x,sin x,ex,axln a,4.导数的运算法则,若f(x),g(x)存在
2、,则有: (1)f(x)g(x)_; (2)f(x)g(x) _ ;,f(x)g(x),f(x)g(x)f(x)g(x),5.复合函数的导数 复合函数yf(g(x)的导数和函数yf(u),ug(x)的导数间的关系为yxyuux.,微点提醒,1.f(x0)代表函数f(x)在xx0处的导数值;(f(x0)是函数值f(x0)的导数,且(f(x0)0.,3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点. 4.函数yf(x)的导数f(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f(x)|反映了变化的快慢,|f(x)|越大,曲线在这点处的切线
3、越“陡”.,基 础 自 测,1.判断下列结论正误(在括号内打“”或“”),(1)f(x0)是函数yf(x)在xx0附近的平均变化率.( ) (2)函数f(x)sin(x)的导数f(x)cos x.( ) (3)求f(x0)时,可先求f(x0),再求f(x0).( ) (4)曲线的切线与曲线不一定只有一个公共点.( ),解析 (1)f(x0)表示yf(x)在xx0处的瞬时变化率,(1)错. (2)f(x)sin(x)sin x,则f(x)cos x,(2)错. (3)求f(x0)时,应先求f(x),再代入求值,(3)错. 答案 (1) (2) (3) (4),2.(选修22P35例5改编)曲线y
4、x311在点P(1,12)处的切线与y轴交点的纵坐标是( ) A.9 B.3 C.9 D.15 解析 因为yx311,所以y3x2,所以y|x13,所以曲线yx311在点P(1,12)处的切线方程为y123(x1).令x0,得y9. 答案 C,3.(选修22P25问题1改编)在高台跳水运动中,t s时运动员相对于水面的高度(单位:m)是h(t)4.9t26.5t10,则运动员的速度v_ m/s,加速度a_ m/s2. 解析 vh(t)9.8t6.5,av(t)9.8. 答案 9.8t6.5 9.8,4.(2019榆林质检)已知函数f(x)x(2 018ln x),若f(x0)2 019,则x0
展开阅读全文