书签 分享 收藏 举报 版权申诉 / 14
上传文档赚钱

类型2014年高考试题-数学理(北京卷)原卷版.doc

  • 上传人(卖家):LY520
  • 文档编号:374764
  • 上传时间:2020-03-16
  • 格式:DOC
  • 页数:14
  • 大小:2.10MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2014年高考试题-数学理(北京卷)原卷版.doc》由用户(LY520)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2014 年高 考试题 学理 北京 原卷版 下载 _历年真题_高考专区_数学_高中
    资源描述:

    1、2014年北京高考数学(理科)试题一.选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合,则( ) 2.下列函数中,在区间上为增函数的是( ) 3.曲线(为参数)的对称中心( )在直线上 在直线上 在直线上 在直线上4.当时,执行如图所示的程序框图,输出的值为( ) 5.设是公比为的等比数列,则是为递增数列的( )充分且不必要条件 必要且不充分条件 充分必要条件 既不充分也不必要条件6.若满足且的最小值为-4,则的值为( ) 7. 在空间直角坐标系中,已知,若 ,分别表示三棱锥在,坐标平面上的正投影图形的 面积,则( )(A) (B)且 (C

    2、)且 (D)且 8. 有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若同学每科成绩不 低于同学,且至少有一科成绩比高,则称“同学比同学成绩好.”现有若干同学, 他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样 的.问满足条件的最多有多少学生( ) (A) (B) (C) (D)2、 填空题(共6小题,每小题5分,共30分)9. 复数_.10. 已知向量、满足,且,则_.11. 设双曲线经过点,且与具有相同渐近线,则的方程为_; 渐近线方程为_.12. 若等差数列满足,则当_时的前 项和最大.13. 把5件不同产品摆成一排,若产品A与产品B相邻,且产

    3、品A与产品C不相邻,则不同的摆法有 种14. 设函数,若在区间上具有单调性,且 ,则的最小正周期为_.三解答题(共6题,满分80分)15. (本小题13分)如图,在中,点在边上,且 (1)求 (2)求的长16. (本小题13分).李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过的概率.(2)从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过,一 场不超过的概率.(3) 记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记为李明 在这比赛中的命中次数,比较与的大小(只需写出结论)17.(本小题14分

    4、) 如图,正方形的边长为2,分别为的中点,在五棱锥 中,为棱的中点,平面与棱分别交于点. (1)求证:; (2)若底面,且,求直线与平面所成角的大小,并 求线段的长.18. (本小题13分)已知函数,(1) 求证:;(2) 若在上恒成立,求的最大值与的最小值.19. (本小题14分)已知椭圆,(1) 求椭圆的离心率.(2) 设为原点,若点在椭圆上,点在直线上,且,求直线与圆的位置关系,并证明你的结论.20.(本小题13分)对于数对序列,记,其中表示和两个数中最大的数,(1) 对于数对序列,求的值.(2) 记为四个数中最小值,对于由两个数对组成的数对序列和,试分别对和的两种情况比较和的大小.(3

    5、)在由5个数对组成的所有数对序列中,写出一个数对序列使最小,并写出的值.(只需写出结论).2014年普通高等学校招生全国统一考试数学(理)(北京卷)参考答案一、选择题(共8小题,每小题5分,共40分)(1)C (2)A (3)B (4)C(5)D (6)D (7)D (8)B二、填空题(共6小题,每小题5分,共30分)(9)1 (10)(11) (12)8(13)36 (14)三、解答题(共6小题,共80分)(15)(共13分)解:(I)在中,因为,所以。所以=。()在中,由正弦定理得,在中,由余弦定理得所以(16) (I)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场

    6、,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是05.()设事件A为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”。则C=,A,B独立。根据投篮统计数据,. 所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为.().(17)(共14分)解:(I)在正方形中,因为B是AM的中点,所以。又因为平面PDE,所以平面PDE,因

    7、为平面ABF,且平面平面,所以。()因为底面ABCDE,所以,.如图建立空间直角坐标系,则,, .设平面ABF的法向量为,则即令,则。所以,设直线BC与平面ABF所成角为a,则。因此直线BC与平面ABF所成角的大小为设点H的坐标为。因为点H在棱PC上,所以可设,即。所以。因为是平面ABF的法向量,所以,即。解得,所以点H的坐标为。所以(18)(共13分)解:(I)由得 。 因为在区间上,所以在区间上单调递减。从而。()当时,“”等价于“”“”等价于“”。 令,则, 当时,对任意恒成立。 当时,因为对任意,所以在区间上单调递减。从而对任意恒成立。 当时,存在唯一的使得。 与在区间上的情况如下:

    8、0因为在区间上是增函数,所以。进一步,“对任意恒成立”当且仅当,即, 综上所述,当且仅当时,对任意恒成立;当且仅当时,对任意恒成立。 所以,若对任意恒成立,则a最大值为,b的最小值为1.(19)解:(I)由题意,椭圆C的标准方程为。 所以,从而。因此。故椭圆C的离心率。() 直线AB与圆相切。证明如下:设点A,B的坐标分别为,其中。因为,所以,即,解得。 当时,代入椭圆C的方程,得, 故直线AB的方程为。圆心O到直线AB的距离。 此时直线AB与圆相切。 当时,直线AB的方程为, 即, 圆心0到直线AB的距离 又,故 此时直线AB与圆相切。(20)解:(I) =8() . 当m=a时,= 因为,且,所以 当m=d时, 因为,且所以。 所以无论m=a还是m=d,都成立。()数对序列(4,6),(11,11),(16,11),(11,8),(5,2)的值最小, =10, =26, =42, =50, =52

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2014年高考试题-数学理(北京卷)原卷版.doc
    链接地址:https://www.163wenku.com/p-374764.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库