对坐标的曲线积分第二类曲线积分课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《对坐标的曲线积分第二类曲线积分课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 坐标 曲线 积分 第二 课件
- 资源描述:
-
1、一、一、问题问题的提出的提出二、对坐标的曲线积分的概念二、对坐标的曲线积分的概念三、对坐标的曲线积分的计算三、对坐标的曲线积分的计算四、小结四、小结第三节第三节 对坐标的曲线积分对坐标的曲线积分(第二类第二类 曲线积分曲线积分)曲线积分与曲面积分1oxyABL一、问题的提出1 nMiM1 iM2M1Mix iy 实例实例:变力沿曲线所作的功变力沿曲线所作的功,:BALjyxQiyxPyxF),(),(),(常力所作的功常力所作的功分割分割.),(,),(,1111110BMyxMyxMMAnnnn .)()(1jyixMMiiii .ABFW 曲线积分与曲面积分2求和求和.),(),(1 ni
2、iiiiiiyQxP 取极限取极限.),(),(lim10 niiiiiiiyQxPW 近似值近似值精确值精确值,),(),(),(jQiPFiiiiii 取取,),(1iiiiiMMFW .),(),(iiiiiiiyQxPW 即即 niiWW1oxyABL1 nMiM1 iM2M1M),(iiF ix iy 曲线积分与曲面积分3二、对坐标的曲线积分的概念,0.),(,).,;,2,1(),(,),(),(.),(),(,11101111222111时时长度的最大值长度的最大值如果当各小弧段如果当各小弧段上任意取定的点上任意取定的点为为点点设设个有向小弧段个有向小弧段分成分成把把上的点上的点
3、用用上有界上有界在在函数函数向光滑曲线弧向光滑曲线弧的一条有的一条有到点到点面内从点面内从点为为设设 iiiiiiiiiiniinnnMMyyyxxxBMAMniMMnLyxMyxMyxMLLyxQyxPBAxoyL1.1.定义定义曲线积分与曲面积分4.),(lim),(,(),(,),(101iiniiLniiiixPdxyxPxLyxPxP 记作记作或称第二类曲线积分)或称第二类曲线积分)积分积分的曲线的曲线上对坐标上对坐标在有向曲线弧在有向曲线弧数数则称此极限为函则称此极限为函的极限存在的极限存在类似地定义类似地定义.),(lim),(10iiniiLyQdyyxQ ,),(),(叫做被
4、积函数叫做被积函数其中其中yxQyxP.叫积分弧段叫积分弧段L曲线积分与曲面积分52.2.存在条件:存在条件:.,),(),(第二类曲线积分存在第二类曲线积分存在上连续时上连续时在光滑曲线弧在光滑曲线弧当当LyxQyxP3.3.组合形式组合形式 LLLdyyxQdxyxPdyyxQdxyxP),(),(),(),(.,jdyidxdsjQiPF 其中其中.LdsF曲线积分与曲面积分64.4.推广推广 空间有向曲线弧空间有向曲线弧.),(lim),(10iiiniixPdxzyxP .RdzQdyPdx.),(lim),(10iiiniiyQdyzyxQ .),(lim),(10iiiniizR
5、dzzyxR 曲线积分与曲面积分75.5.性质性质.,)1(2121 LLLQdyPdxQdyPdxQdyPdxLLL则则和和分成分成如果把如果把则则有向曲线弧有向曲线弧方向相反的方向相反的是与是与是有向曲线弧是有向曲线弧设设,)2(LLL 即对坐标的曲线积分与曲线的方向有关即对坐标的曲线积分与曲线的方向有关.LLdyyxQdxyxPdyyxQdxyxP),(),(),(),(曲线积分与曲面积分8三、对坐标的曲线积分的计算,),(),(,0)()(,)(),(,),(,),(),(,),(),(22存在存在则曲线积分则曲线积分且且续导数续导数一阶连一阶连为端点的闭区间上具有为端点的闭区间上具有
6、及及在以在以运动到终点运动到终点沿沿的起点的起点从从点点时时到到变变单调地由单调地由当参数当参数的参数方程为的参数方程为续续上有定义且连上有定义且连在曲线弧在曲线弧设设 LdyyxQdxyxPttttBLALyxMttytxLLyxQyxP 定理定理曲线积分与曲面积分9dttttQtttPdyyxQdxyxPL)()(),()()(),(),(),(且且特殊情形特殊情形.)(:)1(baxxyyL,终点为,终点为起点为起点为.)()(,)(,dxxyxyxQxyxPQdyPdxbaL 则则.)(:)2(dcyyxxL,终点为,终点为起点为起点为.),()(),(dyyyxQyxyyxPQdyP
7、dxdcL 则则曲线积分与曲面积分10.,)()()(:)3(终点终点起点起点推广推广ttztytx dtttttRttttQttttPRdzQdyPdx)()(),(),()()(),(),()()(),(),(曲线积分与曲面积分11例例1 1.)1,1()1,1(,2的一段弧的一段弧到到上从上从为抛物线为抛物线其中其中计算计算BAxyLxydxL 解解的定积分,的定积分,化为对化为对x)1(.xy OBAOLxydxxydxxydx 1001)(dxxxdxxx 10232dxx.54 xy 2)1,1(A)1,1(B曲线积分与曲面积分12的定积分,的定积分,化为对化为对y)2(,2yx
8、ABLxydxxydx 1122)(dyyyy.11到到从从 y 1142dyy.54 xy 2)1,1(A)1,1(B曲线积分与曲面积分13.)0,()0,()2(;)1(,2的直线段的直线段轴到点轴到点沿沿从点从点的上半圆周的上半圆周针方向绕行针方向绕行、圆心为原点、按逆时、圆心为原点、按逆时半径为半径为为为其中其中计算计算aBxaAaLdxyL 例例2 2解解,sincos:)1(ayaxL,变到变到从从 0)0,(aA)0,(aB 0原式原式 daa)sin(sin22 曲线积分与曲面积分14)0,(aA)0,(aB .343a ,0:)2(yL,变到变到从从aax aadx0原式原式
9、.0 注注:被积函数相同,起点和终点也相同,但路:被积函数相同,起点和终点也相同,但路径不同积分结果不同径不同积分结果不同.03a)(cos)cos1(2 d 曲线积分与曲面积分15例例3 3).1,1(),0,1()0,0(,)3(;)1,1()0,0()2(;)1,1()0,0()1(,2222依次是点依次是点,这里,这里有向折线有向折线的一段弧的一段弧到到上从上从抛物线抛物线的一段弧的一段弧到到上从上从抛物线抛物线为为其中其中计算计算BAOOABBOyxBOxyLdyxxydxL 2xy )0,1(A)1,1(B解解.)1(的积分的积分化为对化为对 x,10,:2变到变到从从xxyL 1
展开阅读全文