定积分基本计算公式课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《定积分基本计算公式课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 积分 基本 计算 公式 课件
- 资源描述:
-
1、一一 定积分计算的基本公式定积分计算的基本公式 xadxxf)(考察定积分考察定积分 xadttf)(记记()().xaxf t dt 积分上限函数积分上限函数4.4.定积分的计算定积分的计算abxyoxx 证证dttfxxxxa )()()()(xxx dttfdttfxaxxa )()()(x x dttfdttfdttfxaxxxxa )()()(,)(xxxdttf由积分中值定理得由积分中值定理得(),fx xx ,0),(fx )(limlim00 fxxx ).()(xfx abxyoxx )(x x.xxx 在在 与与之之间间补充补充 ()()()()f b x b xf a x
2、 a x 证证:dttfxFxaxb)()(0)()(0 dttfxb )(0)(,)()(0dttfxa )()()()()(xaxafxbxbfxF ()()()()b xa xdFxf t dtdx 例例1 1 求求.lim21cos02xdtextx 解解 1cos2xtdtedxd,cos12 xtdtedxd)(cos2cos xex,sin2cos xex 21cos02limxdtextx xexxx2sinlim2cos0 .21e 00分析:分析:这是这是 型不定式,应用洛必达法则型不定式,应用洛必达法则.证证 xdtttfdxd0)(),(xxf xdttfdxd0)()
3、,(xf 2000)()()()()()(xxxdttfdtttfxfdttfxxfxF ,)()()()()(200 xxdttfdttftxxfxF)0(,0)(xxf,0)(0 xdttf,0)()(tftx,0)()(0 xdttftx).0(0)(xxF证证,1)(2)(0 dttfxxFx,0)(2)(xfxF,1)(xf,01)0(F 10)(1)1(dttfF 10)(1dttf,0 令令基本公式基本公式CxxF )()(,bax 证证令令ax ,)()(CaaF 0)()(dttfaaa,)(CaF),()()(aFxFdttfxa ,)()(CdttfxFxa 令令 bx)
4、.()()(aFbFdxxfba )()()(aFbFdxxfba 基本公式表明基本公式表明 baFx 注意注意求定积分问题转化为求原函数的问题求定积分问题转化为求原函数的问题.牛顿牛顿莱布尼茨公式莱布尼茨公式牛顿莱布尼茨公式沟通了微分学与积分学牛顿莱布尼茨公式沟通了微分学与积分学之间的关系之间的关系例例4 4 求求 .)1sincos2(20 dxxx原式原式202sincosxxx.23 例例5 5 设设 ,求求 .215102)(xxxxf 20)(dxxf解解解解 102120)()()(dxxfdxxfdxxf 102152dxxdx原式原式.6 xyo12例例6 6 求求 .,ma
5、x222 dxxx解解由图形可知由图形可知,max)(2xxxf,21100222 xxxxxx 21210022dxxxdxdxx原式原式.211 xyo2xy xy 122 例例7 7 求求 解解.112dxx dxx 12112ln|x .2ln2ln1ln 解解 面积面积xyo 0sin xdxA0cos x .2 二二 定积分的换元公式定积分的换元公式定理定理证证),()()(aFbFdxxfba ()(),tFt 令令dtdxdxdFt )()()(txf ),()(ttf ),()()()(dtttf)()()()(FF ),()(aFbF ()()()baf xdxF bF a
6、 )()(.)()(dtttf 应用换元公式时应注意应用换元公式时应注意:(1 1)(2 2)例例9 9 计算计算.sincos205 xdxx解解令令,cosxt 2 x,0 t0 x,1 t 205sincosxdxx 015dtt1066t.61,sin xdxdt 例例10 10 计算计算解解 aadxxax022)0(.1令令,sintax ax ,2 t0 x,0 t,costdtadx 原式原式 2022)sin1(sincosdttatata 20cossincosdtttt 20cossinsincos121dttttt 20cossinln21221 tt.4 证证,)()
展开阅读全文