定积分的概念和基本性质课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《定积分的概念和基本性质课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 积分 概念 基本 性质 课件
- 资源描述:
-
1、1 定积分的定义定积分的定义定积分的基本性质定积分的基本性质2 例例:求曲线求曲线 y=x2、直线、直线 x=1和和 x轴轴所围成的曲边三角形的面积所围成的曲边三角形的面积。x yOy=x21S4.3.1 引出定积分定义的例题引出定积分定义的例题3Sx yOy=x212n1n1nn.1inin21()in (4)(4)取极限取极限 取取Sn的极限,得曲边三角形面积:的极限,得曲边三角形面积:S=nlimS nS n)211)(11(31limnnn=13=(1)(1)分割分割(1,2,.,1)ixinnn=直线把曲边三角形分成 个小曲边梯形。0,1n将区间分成 个相等的小区间。121.innS
2、sssss=(2)(2)近似近似i第 个小曲边梯形面积:211s()(1,2,.,)iiinnn=22211112110()().()nnSnnnnnnn=6)12()1(13=nnnn)211)(11(31nn=。小矩形面积的总和:(3)(3)求和求和nSS4Sx yOy=x212n1n1nn.1inin2()in (4)(4)取极限取极限 取取Sn的极限,得曲边三角形面积:的极限,得曲边三角形面积:S=nlimS nS n)211)(11(31limnnn=13=(1,2,.,1)ixinnn=直线把曲边三角形分成 个小曲边梯形。(1)(1)分割分割0,1n将区间分成 个相等的小区间。12
3、1.innSsssss=21()ini第 个小曲边梯形面积:(2)(2)近似近似211s()(1,2,.,)iiinnn=6)12()1(13=nnnn)211)(11(31nn=。小矩形面积的总和:22211112110()().()nnSnnnnnnn=(3)(3)求和求和5Sx yOy=x212n1n1nn.1inin (4)4)取极限取极限 取取Sn的极限,得曲边三角形面积:的极限,得曲边三角形面积:S=nlimS nS n)211)(11(31limnnn=13=(1,2,.,1)ixinnn=直线把曲边三角形分成 个小曲边梯形。(1)(1)分割分割0,1n将区间分成 个相等的小区间
4、。121.innSsssss=i第 个小曲边梯形面积:(2)(2)近似近似211s()(1,2,.,)iiinnn=6)12()1(13=nnnn)211)(11(31nn=。小矩形面积的总和:22211112110()().()nnSnnnnnnn=(3)(3)求和求和6分分 割割求求 和和近近 似似取极限取极限把整体的问题分成局部的问题把整体的问题分成局部的问题在局部上在局部上“以直代曲以直代曲”,求出求出局部的近似值;局部的近似值;得到整体的一个近似值;得到整体的一个近似值;得到整体量的精确值;得到整体量的精确值;例例:求曲线求曲线 y=x2、直线、直线 x=1和和 x轴轴所围成的曲边三
展开阅读全文