高三数学知识点大全.pdf
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高三数学知识点大全.pdf》由用户(卧龙小子)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高三 数学 知识点 大全 下载 _二轮专题_高考专区_数学_高中
- 资源描述:
-
1、高 三 数 学 知 识 点 大全 第 - 2 - 页 共 130 页 引言 1.课程内容: 必修课程由 5 个模块组成: 必修 1:集合、函数概念与基本初等函数(指、对、幂函数) 必修 2:立体几何初步、平面解析几何初步。 必修 3:算法初步、统计、概率。 必修 4:基本初等函数(三角函数) 、平面向量、三角恒等变换。 必修 5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、 数列、 不等式、解三角形、立体几何初步、 平面解析几何初步等。不同的是在保证打好基础的同时, 进一步强调了这些知识的发生、
2、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有 4 个系列: 系列 1:由 2 个模块组成。 选修 11:常用逻辑用语、圆锥曲线与方程、导数及其应用。 选修 12:统计案例、推理与证明、数系的扩充与复数、框图 系列 2:由 3 个模块组成。 选修 21:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修 22:导数及其应用,推理与证明、数系的扩充与复数 选修 23:计数原理、随机变量及其分布列,统计案例。 系列 3:由 6 个专题组成。 选修 31:数学史选讲。 选修 32:信息安全与密码。 选修 33:球面上的几
3、何。 选修 34:对称与群。 选修 35:欧拉公式与闭曲面分类。 选修 36:三等分角与数域扩充。 系列 4:由 10 个专题组成。 选修 41:几何证明选讲。 选修 42:矩阵与变换。 第 - 3 - 页 共 130 页 选修 43:数列与差分。 选修 44:坐标系与参数方程。 选修 45:不等式选讲。 选修 46:初等数论初步。 选修 47:优选法与试验设计初步。 选修 48:统筹法与图论初步。 选修 49:风险与决策。 选修 410:开关电路与布尔代数。 2重难点及考点: 重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数 难点:函数、圆锥曲线 高考相关考点: 集合与简易逻辑
4、:集合的概念与运算、简易逻辑、充要条件 函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与 指数函数、对数与对数函数、函数的应用 数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用 三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函 数的图象与性质、三角函数的应用 平面向量:有关概念与初等运算、坐标运算、数量积及其应用 不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应 用 直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系 圆锥曲线方程:椭圆、双曲线、
5、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应 用 直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量 排列、组合和概率:排列、组合应用题、二项式定理及其应用 概率与统计:概率、分布列、期望、方差、抽样、正态分布 导数:导数的概念、求导、导数的应用 复数:复数的概念与运算 第 - 4 - 页 共 130 页 高中数学 必修 1 知识点 第一章集合与函数概念 1.1集合 【1.1.1】集合的含义与表示 (1)集合的概念 集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法 N表示自然数集,N或N表示正整数集,Z表示整数集,Q表示有理数集,R表
6、示实数集. (3)集合与元素间的关系 对象a与集合M的关系是aM,或者aM,两者必居其一. (4)集合的表示法 自然语言法:用文字叙述的形式来描述集合. 列举法:把集合中的元素一一列举出来,写在大括号内表示集合. 描述法:x|x具有的性质,其中x为集合的代表元素. 图示法:用数轴或韦恩图来表示集合. 第 - 5 - 页 共 130 页 (5)集合的分类 含有有限个元素的集合叫做有限集.含有无限个元素的集合叫做无限集.不含有任何元素的集合叫做空 集(). 【1.1.2】集合间的基本关系 (6)子集、真子集、集合相等 名称记号意义性质示意图 子集 BA (或 )AB A 中的任一元素都 属于 B
7、(1)AA (2)A (3)若BA 且BC,则AC (4)若BA 且BA,则AB ? A(B) 或 BA 真子集 A B (或 B A) BA , 且 B 中至 少有一元素不属于 A (1)A (A 为非空子集) (2)若AB 且BC ,则AC BA 集合 相等 AB A 中的任一元素都 属于 B,B 中的任 一元素都属于 A (1)AB (2)BA ? A(B) (7)已知集合A有(1)n n 个元素,则它有2n个子集,它有21 n 个真子集,它有21 n 个非空子集,它有22 n 非空真子集. 【1.1.3】集合的基本运算 (8)交集、并集、补集 名称记号意义性质示意图 交集 AB |,x
8、 xA且 xB (1)AAA (2)A 第 - 6 - 页 共 130 页 (3)ABA ABB 并集 AB |,x xA或 xB (1)AAA (2)AA (3)ABA ABB 补集 UA |,x xUxA且1 () U AA 2 () U AAU ()()() UUU ABAB ()()() UUU ABAB A 【补充知识】含绝对值的不等式与一元二次不等式的解法 (1)含绝对值的不等式的解法 不等式解集 |(0)xa a |xaxa |(0)xa a |x xa 或xa |,|(0)axbc axbc c 把axb看成一个整体,化成|xa, |(0)xa a型不等式来求解 (2)一元二次
9、不等式的解法 判别式 2 4bac 0 0 0 二次函数 2 (0)yaxbxc a 的图象 O = O L O 一元二次方程 2 0(0)axbxca 的根 2 1,2 4 2 bbac x a (其中 12) xx 12 2 b xx a 无实根 第 - 7 - 页 共 130 页 2 0(0)axbxca 的解集 1 |x xx或 2 xx |x 2 b x a R 2 0(0)axbxca 的解集 12 |x xxx 1.2函数及其表示 【1.2.1】函数的概念 (1)函数的概念 设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有 唯一确定的数(
10、 )f x和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到 B的一个函数,记作:fAB 函数的三要素:定义域、值域和对应法则 只有定义域相同,且对应法则也相同的两个函数才是同一函数 (2)区间的概念及表示法 设, a b是两个实数,且ab,满足axb的实数x的集合叫做闭区间,记做 , a b;满足axb的 实数x的集合叫做开区间,记做( , )a b;满足axb,或axb的实数x的集合叫做半开半闭区间, 分 别 记 做 , )a b,( , a b; 满 足,xa xa xb xb的 实 数x的 集 合 分 别 记 做 ,),( ,),(, ,(, )aabb 注意
11、:对于集合 |x axb与区间( , )a b,前者a可以大于或等于b,而后者必须 ab, (前者可以不成立,为空集;而后者必须成立) (3)求函数的定义域时,一般遵循以下原则: ( )f x是整式时,定义域是全体实数 ( )f x是分式函数时,定义域是使分母不为零的一切实数 ( )f x是偶次根式时,定义域是使被开方式为非负值时的实数的集合 第 - 8 - 页 共 130 页 对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于 1 tanyx中,() 2 xkkZ 零(负)指数幂的底数不能为零 若( )f x是由有限个基本初等函数的四则运算而合成的函数时,则其定义域
12、一般是各基本初等函数的定义 域的交集 对于求复合函数定义域问题,一般步骤是:若已知( )f x的定义域为 , a b,其复合函数 ( )f g x的定义域 应由不等式( )ag xb解出 对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论 由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义 (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的事实上,如果在函数的值域中存在一个最小 (大)数,这个数就是函数的最小(大)值因此求函数的最值与值域,其实质是相同的,只是提问的角度 不同求函数值域与最值的常用方法: 观察法:对于比较简
13、单的函数,我们可以通过观察直接得到值域或最值 配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或 最值 判别式法: 若函数( )yf x可以化成一个系数含有y的关于x的二次方程 2 ( )( )( )0a y xb y xc y, 则 在( )0a y 时,由于, x y为实数,故必须有 2( ) 4 ( )( )0bya yc y ,从而确定函数的值域或最值 不等式法:利用基本不等式确定函数的值域或最值 换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函 数的最值问题 反函数法:利用函数和它的反函数的定义域与
14、值域的互逆关系确定函数的值域或最值 数形结合法:利用函数图象或几何方法确定函数的值域或最值 第 - 9 - 页 共 130 页 函数的单调性法 【1.2.2】函数的表示法 (5)函数的表示方法 表示函数的方法,常用的有解析法、列表法、图象法三种 解析法:就是用数学表达式表示两个变量之间的对应关系列表法:就是列出表格来表示两个变量之间的对 应关系图象法:就是用图象表示两个变量之间的对应关系 (6)映射的概念 设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的 元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记 作:
15、fAB 给定一个集合A到集合B的映射,且,aA bB如果元素a和元素b对应,那么我们把元素b叫做元 素a的象,元素a叫做元素b的原象 1.3函数的基本性质 【1.3.1】单调性与最大(小)值 (1)函数的单调性 定义及判定方法 函数的 性 质 定义图象判定方法 第 - 10 - 页 共 130 页 函数的 单调性 如果对于属于定义域 I 内 某个区间上的任意两个 自变量的值 x1、 x2,当 x 1 x 2 时,都有 f(x 1 ) L A B 公理 1 作用:判断直线是否在平面内 (2)公理 2:过不在一条直线上的三点,有且只有一个平面。 L A C B A 第 - 27 - 页 共 130
16、 页 P L 符号表示为:A、B、C 三点不共线 = 有且只有一个平面, 使 A、B、C。 公理 2 作用:确定一个平面的依据。 (3)公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P =L,且 PL 公理 3 作用:判定两个平面是否相交的依据 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线:不同在任何一个平面内,没有公共点。 2 公理 4:平行于同一条直线的两条直线互相平行。 符号表示为:设 a、b、c 是三条直线 ab
17、cb 强调:公理 4 实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理 4 作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: a与 b所成的角的大小只由 a、b 的相互位置来确定,与O的选择无关,为简便,点O一般取在两直线中 的一条上; 两条异面直线所成的角(0,); 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作 ab; 共面直线 =ac 2 第 - 28 - 页 共 130 页 两条直线互相垂直,有共面垂直与异面垂直两种情形; 计算中,通常把两条异面直线所成的角转化为两条相交直线所成
18、的角。 2.1.3 2.1.4 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系: (1)直线在平面内 有无数个公共点 (2)直线与平面相交 有且只有一个公共点 (3)直线在平面平行 没有公共点 指出:直线与平面相交或平行的情况统称为直线在平面外,可用 a来表示 aa=Aa 2.2.直线、平面平行的判定及其性质 2.2.1 直线与平面平行的判定 1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 简记为:线线平行,则线面平行。 符号表示: a b=a ab 2.2.2 平面与平面平行的判定 1、两个平面平行的判定定理:一个平面内
19、的两条交直线与另一个平面平行,则这两个平面平行。 第 - 29 - 页 共 130 页 符号表示: a b ab = P a b 2、判断两平面平行的方法有三种: (1)用定义; (2)判定定理; (3)垂直于同一条直线的两个平面平行。 2.2.3 2.2.4 直线与平面、平面与平面平行的性质 1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。 简记为:线面平行则线线平行。 符号表示: a aab = b 作用:利用该定理可解决直线间的平行问题。 2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。 符号表示: 第 - 30 - 页 共 130 页
20、 = aab = b 作用:可以由平面与平面平行得出直线与直线平行 2.3 直线、平面垂直的判定及其性质 2.3.1 直线与平面垂直的判定 1、定义 如果直线 L 与平面内的任意一条直线都垂直,我们就说直线 L 与平面互相垂直,记作 L,直线 L 叫做 平面的垂线,平面叫做直线 L 的垂面。如图,直线与平面垂直时,它们唯一公共点 P 叫做垂足。 L p 2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。 注意点:a)定理中的“两条相交直线”这一条件不可忽视; b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。 2.3.2 平面与平面垂直的判定
21、1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形 A 梭 l B 2、二面角的记法:二面角-l-或-AB- 3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。 2.3.3 2.3.4 直线与平面、平面与平面垂直的性质 1、定理:垂直于同一个平面的两条直线平行。 2 性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。 第 - 31 - 页 共 130 页 本章知识结构框图 第三章直线与方程 3.1 直线的倾斜角和斜率 3.1 倾斜角和斜率 1、直线的倾斜角的概念:当直线 l 与 x 轴相交时, 取 x 轴作为基准, x 轴正向与直线
22、 l 向上方向之间所成的角叫 做直线 l 的倾斜角.特别地,当直线 l 与 x 轴平行或重合时, 规定= 0. 2、 倾斜角的取值范围:0180. 当直线 l 与 x 轴垂直时, = 90. 3、直线的斜率: 一条直线的倾斜角(90)的正切值叫做这条直线的斜率,斜率常用小写字母 k 表示,也就是 k = tan 当直线 l 与 x 轴平行或重合时, =0, k = tan0=0; 当直线 l 与 x 轴垂直时, = 90, k 不存在. 由此可知, 一条直线 l 的倾斜角一定存在,但是斜率 k 不一定存在. 4、 直线的斜率公式: 给定两点 P1(x1,y1),P2(x2,y2),x1x2,用
展开阅读全文