向量的数量积向量积课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《向量的数量积向量积课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 向量 数量 课件
- 资源描述:
-
1、一、两向量的数量积一、两向量的数量积二、两向量的向量积二、两向量的向量积三、向量的混合积三、向量的混合积 一一物物体体在在常常力力F作作用用下下沿沿直直线线从从点点1M移移动动到到点点2M,以以s表表示示位位移移,则则力力F所所作作的的功功为为 cos|sFW(其中其中 为为F与与s的夹角的夹角)启示启示向量向量a与与b的的数量积数量积为为ba cos|baba (其中其中 为为a与与b的夹角的夹角)实例实例两向量作这样的运算两向量作这样的运算,结果是一个数量结果是一个数量.定义定义一、两向量的数量积一、两向量的数量积ab cos|baba ,Prcos|bjba因为,Prcos|ajab a
2、jbbabPr|所以.Pr|bjaa 数量积也称为数量积也称为“点积点积”、“内积内积”.结论结论 两向量的数量积等于其中一个向量的两向量的数量积等于其中一个向量的模和另一个向量在这向量的方向上的投影的模和另一个向量在这向量的方向上的投影的乘积乘积.关于数量积的说明:关于数量积的说明:0)2(ba.ba)(,0 ba,0|a,0|b,0cos .ba.|)1(2aaa )(,ba ,0cos .0cos|baba,0 .|cos|2aaaaa 证证证证 ,2,2 数量积符合下列运算规律:数量积符合下列运算规律:(1 1)交换律)交换律:;abba (2 2)分配律)分配律:;)(cbcacba
3、 (3 3)若)若 为数为数:),()()(bababa 若若 、为数为数:).()()(baba ,kajaiaazyx kbjbibbzyx 设设 ba)(kajaiazyx )(kbjbibzyx ,kji ,0 ikkjji,1|kji.1 kkjjiizzyyxxbabababa 数量积的坐标表达式数量积的坐标表达式 cos|baba ,|cosbaba 222222coszyxzyxzzyyxxbbbaaabababa 两向量夹角余弦的坐标表示式两向量夹角余弦的坐标表示式 ba0 zzyyxxbababa由此可知两向量垂直的充要条件为由此可知两向量垂直的充要条件为解解ba)1(2)
4、4()2(111 .9 222222cos)2(zyxzyxzzyyxxbbbaaabababa ,21 ajbbabPr|)3(.3|Pr bbaajb .43 例例 2 2 证证明明向向量量c与与向向量量acbbca)()(垂垂直直.证证cacbbca )()()()(cacbcbca )(cacabc 0 cacbbca )()(|FOQM sin|FOP M的的方方向向垂垂直直于于OP与与F所所决决定定的的平平面面,指指向向符符合合右右手手系系.实例实例二、两向量的向量积二、两向量的向量积LFPQO 向向量量a与与b的的向向量量积积为为 bac sin|bac(其中其中 为为a与与b的
5、夹角的夹角)定义定义关于向量积的说明:关于向量积的说明:.0)1(aa)0sin0(ba)2(/.0 ba)0,0(ba向量积也称为向量积也称为“叉积叉积”、“外积外积”.向量积符合下列运算规律:向量积符合下列运算规律:(1).abba (2)分配律:分配律:.)(cbcacba (3)若若 为数:为数:).()()(bababa )(,0 ba,0|a,0|b,0sin ,0 )(0sin .0sin|baba证证ba/ba/或或0 ,kajaiaazyx kbjbibbzyx 设设 ba)(kajaiazyx )(kbjbibzyx ,kji ,0 kkjjii,jik ,ikj ,kij
6、 .jki ,ijk kbabajbabaibabaxyyxzxxzyzzy)()()(向量积的坐标表达式向量积的坐标表达式向量积还可用三阶行列式表示向量积还可用三阶行列式表示zyxzyxbbbaaakjiba ba/zzyyxxbababa 由上式可推出由上式可推出zzyxbaaa 000,0 yxaa补充补充xb、yb、zb不不能能同同时时为为零零,但但允允许许两两个个为为零零,例如,例如,abbac 例例 3 3 求求与与kjia423 ,kjib2 都都垂垂直直的的单单位位向向量量.解解zyxzyxbbbaaakjibac 211423 kji,510kj ,55510|22 c|0c
展开阅读全文