向量法解立体几何课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《向量法解立体几何课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 向量 立体几何 课件
- 资源描述:
-
1、数学专题二二、立体几何问题的类型及解法二、立体几何问题的类型及解法1、判断直线、平面间的位置关系;(1)直线与直线的位置关系;(2)直线与平面的位置关系;(3)平面与平面的位置关系;2、求解空间中的角度;3、求解空间中的距离。1、直线的方向向量;2、平面的法向量。一、引入两个重要空间向量一、引入两个重要空间向量一一.引入两个重要的空间向量引入两个重要的空间向量1.直线的方向向量 把直线上任意两点的向量或与它平行的向量都称为直线的方向向量直线的方向向量.如图1,在空间直角坐标系中,由A(x1,y1,z1)与B(x2,y2,z2)确定的直线AB的方向向量是2121 21(,)A B x x y y
2、 z z zxyAB2.平面的法向量如果表示向量n的有向线段所在的直线垂直于平面,称这个向量垂直于平面,记作n,这时向量n叫做平面平面的法向量的法向量.n在空间直角坐标系中,如何求平面法向量的坐标呢?如图2,设a=(x1,y1,z1)、b=(x2,y2,z2)是平面内的两个不共线的非零向量,由直线与平面垂直的判定定理知,若na且nb,则n.换句话说,若na=0且nb=0,则n.abn求平面的法向量的坐标的步骤第一步第一步(设设):设出平面法向量的坐标为n=(x,y,z).第二步(列):根据na=0且nb=0可列出方程组第三步(解):把z看作常数,用z表示x、y.第四步(取):取z为任意一个正数
3、(当然取得越特 殊越好),便得到平面法向量n的坐标.11122200 xx yy zzxx y y z z例例1在棱长为2的正方体ABCD-A1B1C1D1中,O是面AC的中心,求面OA1D1的法向量.A AABCDOA1B1C1D1zxy解:以A为原点建立空间直角坐标系O-xyz(如图),设平面OA1D1的法向量的法向量为n=(x,y,z),则O(1,1,0),A1(0,0,2),D1(0,2,2)由 =(-1,-1,2),=(-1,1,2)得 ,解得 取z=1得平面OA1D1的法向量的坐标n=(2,0,1).1OA1OD 2020 x yzx yz 20 xzy二二.立体几何问题的类型及解
4、法立体几何问题的类型及解法1.判定直线、平面间的位置关系(1)直线与直线的位置关系 不重合的两条直线a,b的方向向量分别为a,b.若ab,即a=b,则ab.若ab,即ab=0,则ababab例例2已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,C1CB=C1CD=BCD=,求证:C C1BDA1B1C1D1CBAD证明:设 a,b,c,依题意有|a|=|b|,于是 a b =c(a b)=ca cb =|c|a|cos|c|b|cos=0 C C1BDCDCB1CCBDCBCD 1CCBD(2)直线与平面的位置关系 直线L的方向向量为a,平面的法向量为n,且L .若an,即a=n
5、,则 L 若an,即an=0,则a .nanaLL例例3棱长都等于2的正三棱柱ABC-A1B1C1,D,E分别是AC,CC1的中点,求证:(I)A1E 平面DBC1;(II)AB1 平面DBC1A1C1B1ACBEDzxy解:以D为原点,DA为x轴,DB为y轴建立空间直角坐标系D-xyz.则A(-1,0,0),B(0,0),E(1,0,1),A1(-1,0,2),B1(0,2),C1(1,0,2).设平面DBC1的法向量为n=(x,y,z),则 解之得 ,取z=1得n=(-2,0,1)(I)=-n,从而A1E 平面DBC1(II),而 n=-2+0+2=0AB1 平面DBC1330302yzx
6、02yzx)1,0,2(1EA)2,3,1(1AB1AB(3)平面与平面的位置关系平面的法向量为n1,平面的法向量为n2 n1 n1 n2 n2若n1n2,即n1=n2,则若n1n2,即n1 n2=0,则例例4正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点,求证:面AED面A1FDzxyABCDFEA1B1C1D1 证明:以A为原点建立如图所示的的直角坐标系A-xyz,设正方体的棱长为2,则E(2,0,1),A1(0,0,2),F(1,2,0),D(0,2,0),于是设平面AED的法向量为n1=(x,y,z)得 解之得 取z=2得n1=(-1,0,2)同理可得平面A1FD的
7、法向量为n2=(2,0,1)n1 n2=-2+0+2=0面AED面A1FD)1,0,2(AE)0,2,0(AD0202yzx021yzx2.求空间中的角(1)两异面直线的夹角利用向量法求两异面直线所成的夹角,不用再把这两条异面直线平移,求出两条异面直线的方向向量,则两方向向量的夹角与两直线的夹角相等或互补,我们仅取锐角或直角就行了.例例5如图在正方体ABCD-A1B1C1D1中,M是AB的中点,则对角线DB1与CM所成角的余弦值为_.BC A MxzyB1C1D1A1CD解:以A为原点建立如图所示的直角坐标系A-xyz,设正方体的棱长为2,则M(1,0,0),C(2,2,0),B1(2,0,2
展开阅读全文