回归分析的基本思想及其初步应用课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《回归分析的基本思想及其初步应用课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 回归 分析 基本 思想 及其 初步 应用 课件
- 资源描述:
-
1、2022-9-28郑平正 制作3.1回归分析的基回归分析的基本思想及其初步本思想及其初步应用应用高二数学高二数学 选修选修1-2 比数学3中“回归”增加的内容数学数学统计统计1.画散点图画散点图2.了解最小二乘法了解最小二乘法的思想的思想3.求回归直线方程求回归直线方程ybxa4.用回归直线方程用回归直线方程解决应用问题解决应用问题选修-统计案例5.引入线性回归模型引入线性回归模型ybxae6.了解模型中随机误差项了解模型中随机误差项e产产生的原因生的原因7.了解相关指数了解相关指数 R2 和模型拟和模型拟合的效果之间的关系合的效果之间的关系8.了解残差图的作用了解残差图的作用9.利用线性回归
2、模型解决一类利用线性回归模型解决一类非线性回归问题非线性回归问题10.正确理解分析方法与结果正确理解分析方法与结果问题问题1:正方形的面积:正方形的面积y与正方形的边长与正方形的边长x之间之间 的的函数关系函数关系是是y=x2确定性关系确定性关系问题问题2:某水田水稻产量:某水田水稻产量y与施肥量与施肥量x之间是否之间是否 有一个确定性的关系?有一个确定性的关系?例如:在例如:在 7 块并排、形状大小相同的试验田上块并排、形状大小相同的试验田上 进行施肥量对水稻产量影响的试验,得进行施肥量对水稻产量影响的试验,得 到如下所示的一组数据:到如下所示的一组数据:施化肥量施化肥量x 15 20 25
3、 30 35 40 45水稻产量水稻产量y 330 345 365 405 445 450 455复习、变量之间的两种关系复习、变量之间的两种关系10 20 30 40 50500450400350300施化肥量施化肥量x 15 20 25 30 35 40 45水稻产量水稻产量y 330 345 365 405 445 450 455xy施化肥量施化肥量水稻产量水稻产量 自变量取值一定时,因变量的取值带有一定自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做随机性的两个变量之间的关系叫做相关关系相关关系。1、定义、定义:1):相关关系是一种不确定性关系;):相关关系是一种不
4、确定性关系;注注对具有相关关系的两个变量进行统计对具有相关关系的两个变量进行统计分析的方法叫分析的方法叫回归分析回归分析。2):):2 2、现实生活中存在着大量的相关关系。现实生活中存在着大量的相关关系。例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其身高和体重数据如表1-1所示。所示。编号12345678身高/cm165165 157 170 175 165 155 170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172c
5、m的女大学生的体重。的女大学生的体重。案例案例1:女大学生的身高与体重:女大学生的身高与体重解:解:1、选取身高为自变量、选取身高为自变量x,体重为因变量,体重为因变量y,作散点图:,作散点图:2、由散点图知道身高和体重有比较、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。回归方程刻画它们之间的关系。172.85849.0 xy分析:由于问题中分析:由于问题中要求根据身高预报要求根据身高预报体重,因此选取身体重,因此选取身高为自变量,体重高为自变量,体重为因变量为因变量学学身身高高172cm女172cm女大大生生体体重重
6、y=0.849y=0.849172-85.712=60.316(kg)172-85.712=60.316(kg)2.2.回归方程:回归方程:1.散点图;散点图;探究:探究:身高为身高为172cm的女大学生的体重一定是的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?吗?如果不是,你能解析一下原因吗?例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其身高和体重数据如表1-1所示。所示。编号12345678身高/cm165165 157 170 175 165 155 170体重/kg4857505464614359求根据一名女大学生
7、的身高预报她的体重的回归方程,并预报一名身高为求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。的女大学生的体重。案例案例1:女大学生的身高与体重:女大学生的身高与体重解:解:1、选取身高为自变量、选取身高为自变量x,体重为因变量,体重为因变量y,作散点图:,作散点图:2、由散点图知道身高和体重有比较、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。回归方程刻画它们之间的关系。3、从散点图还看到,样本点散布在、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条某一条直线的附
8、近,而不是在一条直线上,所以不能用一次函数直线上,所以不能用一次函数y=bx+a描述它们关系。描述它们关系。我们可以用下面的我们可以用下面的线性回归模型线性回归模型来表示:来表示:y=bx+a+e,其中其中a和和b为模型的未知参数,为模型的未知参数,e称为称为随机误差随机误差。线性回归模型:线性回归模型:思考思考:产生随机误差项产生随机误差项e的原因是什么?的原因是什么?随机误差随机误差e e的来源的来源(可以推广到一般):可以推广到一般):1、忽略了其它因素的影响:、忽略了其它因素的影响:影响体重影响体重y y的因素不只的因素不只是身高是身高x x,可能还包括遗传基因、饮食习惯、生,可能还包
9、括遗传基因、饮食习惯、生长环境等因素;长环境等因素;2、用线性回归模型近似真实模型所引起的误差;、用线性回归模型近似真实模型所引起的误差;3、身高、身高 y 的观测误差。的观测误差。以上三项误差越小,说明我们的回归模型的拟合以上三项误差越小,说明我们的回归模型的拟合效果越好。效果越好。函数模型与回归模型之间的差别函数模型与回归模型之间的差别函数模型:abxy回归模型:eabxy 线性回归模型线性回归模型y=bx+a+e增加了随机误差项增加了随机误差项e,因变量,因变量y的值由的值由自变量自变量x和随机误差项和随机误差项e共同确定,即共同确定,即自变量自变量x只能解析部分只能解析部分y的变的变化
10、化。在统计中,我们也把自变量在统计中,我们也把自变量x称为解析变量,因变量称为解析变量,因变量y称为预报称为预报变量。变量。探究:在线性回归模型中,应该探究:在线性回归模型中,应该怎样研究随机误差呢?怎样研究随机误差呢?本节课的重点:理解模型拟本节课的重点:理解模型拟合效果的分析工具合效果的分析工具残差和残差和相相关指数关指数2R()niiibyy21为残差平方和。Q(a,)Q(a,)iiieyyii对于样本点(x,y)的随机误差的估计值程称相应残差.2e残差残差平方和越残差平方和越小精确度越高小精确度越高表表3-2列出了女大学生身高和体重的原始数据以及相应的残差数据。列出了女大学生身高和体重
11、的原始数据以及相应的残差数据。在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用回归模型来拟合数据。是否可以用回归模型来拟合数据。残差分析与残差图的定义:残差分析与残差图的定义:然后,我们可以通过残差然后,我们可以通过残差 来判断模型拟合的效果,判断原始来判断模型拟合的效果,判断原始数据中是否存在可疑数据,数据中是否存在可疑数据,这方面的分析工作称为残差分析这方面的分析工作称为残差分析。12,ne ee 编号编号12345678身高身高/cm165165157170175165155170体重体
12、重/kg4857505464614359残差残差-6.3732.6272.419-4.6181.1376.627-2.8830.382 我们可以利用图形来分析残差特性,我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图。编号,或身高数据,或体重估计值等,这样作出的图形称为残差图。-8-8-6-6-4-4-2-22 24 46 68 8O O2 21 13 34 46 65 57 78 89 91010编号编号残差残差.残差点比较均匀地落在(以x轴为中心)水平带状区域内.模型较合适
13、带状区域的宽度越窄,模型拟合精度越高,回归方程的预报精度越高2022-9-28郑平正 制作残差图的制作及作用。残差图的制作及作用。坐标纵轴为残差变量,横轴可以有不同的选择;坐标纵轴为残差变量,横轴可以有不同的选择;若模型选择的正确,残差图中的点应该分布在以若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域横轴为心的带形区域;对于远离横轴的点,要特别注意对于远离横轴的点,要特别注意。身高与体重残差图异常点 错误数据 模型问题 几点说明:几点说明:第一个样本点和第第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为个样本点的残差比较大,需要确认在采集过程中是否有人为的错
14、误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。据;如果数据采集没有错误,则需要寻找其他的原因。另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。.43210-1-2-3-40 100 200 300 400 500 600 70
15、0 800 900 1000 454035302520151050-50 10 20 30 40 50 60 70 80 90 100 25002000150010005000-500-10000 10 20 30 40 50 60 70 80 90 100200150100500-50-100-1500 10 20 30 40 50 60 70 80 90 100 .()()分析下列残差图分析下列残差图,所选用的回归模型效果最好的是()所选用的回归模型效果最好的是()牛刀小试牛刀小试显然,显然,R2的值越大,说明残差平方和越小,也就是说的值越大,说明残差平方和越小,也就是说模型拟合效果越好。
16、模型拟合效果越好。在线性回归模型中,在线性回归模型中,R2表示解析变量对预报变量变化的贡献率。表示解析变量对预报变量变化的贡献率。R2越接近越接近1,表示回归的效果越好(因为,表示回归的效果越好(因为R2越接近越接近1,表示解析变量,表示解析变量和预报变量的线性相关性越强)和预报变量的线性相关性越强)。如果某组数据可能采取几种不同回归方程进行回归分析,则可以如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较通过比较R2的值来做出选择,即选取的值来做出选择,即选取R2较大的模型作为这组数据较大的模型作为这组数据的模型。的模型。另外,我们可以用另外,我们可以用相关指数相关指数R2来刻
展开阅读全文