免疫学检测中的曲线拟合课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《免疫学检测中的曲线拟合课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 免疫学 检测 中的 曲线拟合 课件
- 资源描述:
-
1、n免疫测定中的数据处理n数据处理与科学作图免疫测定的数据处理及结果报告免疫测定的数据处理及结果报告l临床免疫检测技术临床免疫检测技术:RIA和EIA等;l数据处理的意义和目标数据处理的意义和目标:只有在测定结果以一种有意义的方式报告时,测定结果才有用;免疫测定结果的客观评价,对改善免疫测定的重复性以及免疫测定的标准化都有重要意义。l数据处理报告的要求数据处理报告的要求:通俗易懂;定性结果明确,定量范围明确;处理后得到的数据要具有可重复性;试验的评价不能建立在假定的正态分布上;结果具有用于进一步分析处理(如流行病学)的充分性。l免疫测定以其测定结果的表达方式免疫测定以其测定结果的表达方式:定性,
2、定量两类。定性测定定性测定-“有有”或或“无无”l判定结果判定结果:阴性,阳性。l判定依据判定依据:cut-off值,S/N or P/N比值。l判断依据确立原则判断依据确立原则:尽可能避免假阳性和假阴性结果的出现。l应用应用:传染性病原体的血清标志物检测。定性测定数据处理-cut-off值的确定相关概念:ELISAELISA测定的测定的“灰区灰区”-阳性判断值的确定就是要使以其得到的测定结果的假阳性和假阴性的发生率最低,处于阳性判断值定值域中的测定结果可归为可疑,亦即ELISA测定的“灰区”。定性测定数据处理-cut-off值的确定Cut-off Cut-off 值设定的一般方法:值设定的一
3、般方法:标准差比率标准差比率 standard deviation ratio,SDR测定标本对阴性比值测定标本对阴性比值(P/N or S/N)test to negative ratio,TNR以阴性对照均值以阴性对照均值+2+2或或3 3SD作为作为cut-off值值综合阴性对照均值综合阴性对照均值+2+2或或3 3SD及阳性对照及阳性对照-2-2或或3 3SD建立建立cut-off值值综合阴性对照均值综合阴性对照均值+2+2或或3 3SD及阳性对照及阳性对照-2-2或或3 3SD和转化血清结果建立和转化血清结果建立cutoff值值百分位数法百分位数法相对单位相对单位(relative
4、units,EIU):标本标本EIU=双质控双质控(double control,2C):0.18X0.18X(阴性质控物中值(阴性质控物中值+阳性质控物中值)阳性质控物中值)1.1.使用使用ROC曲线设定曲线设定cut-off值值 标本测定值参考样本(弱阳性质控)测定值使用使用ROC曲线设定曲线设定cut-off 值:值:lROC曲线曲线:横坐标为假阳性率FPR=假阳性数/(假阳性+真阴性)纵坐标为真阳性率TPR=真阳性数/(真阳性+假阴性)根据这种关系确定区分正常与异常的分界点究竟在何处最合适,也就是说此时的假阳性和假阴性率最低或比例最适当或最为符合使用目的,该分界点即可作为ELISA c
5、ut-off值。ROC曲线的含义:曲线的含义:阳性人群的测定值与阴性人群的测定值重叠程度越小,即测定的识别能力越高,ROC曲线越偏向上,曲线下面积越大。定量测定定量测定-测定待测物的含量测定待测物的含量l判定结果判定结果:浓度(U/L,g/L)。l判断依据判断依据:测定未知标本的同时,以系列浓度标准品测得的剂量反应曲线(即标准曲线)以此推算未知标本的浓度。l剂量反应曲线剂量反应曲线:一般均为非线性的,不同的数学模式可以用来改善上述剂量反应曲线绘制的精密度,从而以较少的数据和计算获得较为准确的结果。l应用应用:非传染性血清学指标。免疫测定中的剂量反应曲线(相对于定量生化):非线性非线性测定反应和
6、待测物浓度之间的关系不一定是一条简单的直线;可能存在与系列标准品的测定数据拟合的多条曲多条曲线线可能因曲线的选择而造成偏差;具有相对大的且方差不齐的测定误差测定误差,且在标准曲线的不同位置、在不同批的测定之间这种误差亦不同。单纯线性回归往往不能反应真实情况单纯线性回归往往不能反应真实情况Figure 1 Falsely low and falsely elevated assay values resulting from drawing a straight line for the calibration curve.数据处理与科学作图数据处理与科学作图问题:问题:给定一批离散的数据点,需
7、确定满足特定要求的曲线或 曲面,从而获取整体的规律。目标目标:用一个解析函数描述一组(二维)数据(通常是测量值)。方法方法:u插值法插值法-数据假定是正确的,要求以某种方法描述数据点之间所发生的情况;u曲线拟合或回归曲线拟合或回归-设法找出某条光滑曲线,使它最佳 地拟合数据,但不必要经过任何数据点。曲线及相应数学公式表明数据对(如标准品浓度与测定信号)之间的比例关系。拟合拟合 与与 插值插值 的的 比比 较较数据拟合:数据拟合:又称曲线拟合或曲面拟合,不要求曲线(面)通过所有数据点,而是要求它反映对象整体的变化趋势时应用。插值:插值:要求所求曲线(面)通过所给所有数据点时应用;从几何意义上看,
8、拟合拟合是给定了空间中的一些点,找到一个已知形式的连续曲面来最大限度地逼近这些点;而插值插值是找到一个(或几个分片光滑的)连续曲面来穿过这些点。线性内插与2阶曲线拟合u插值法插值法 interpolative methodsl假设假设:反应变量的已知绝对精密;l曲线构建曲线构建:以观察到的数据构建曲线;l方法方法:l点对点(线性插值)l样条插值 spline functionl点对点(线性插值)n假设假设:中间值落在数据点之间的直线上;n当数据点个数数据点个数增加和它们之间距离减小时,线性插值就更精确;n适用范围适用范围:线性范围大或数据点多且相互紧密相连;n处理处理:为使数据更具有线性关系,
9、可对数据进行某些方式的转换(如对数转换),然后在转换数据上进行线性插值。X将临近的校准点以点对点的方式用一条直线连起来。将临近的校准点以点对点的方式用一条直线连起来。线性插值在免疫检测中的应用:线性插值在免疫检测中的应用:n采用某些更光滑的曲线光滑的曲线来拟合数据点;n最常用的方法是3阶多项式,对相继数据点之间的各段建模,这种类型的插值被称为3 3次样条次样条或简称为样条;样条;n处理处理:为将每一个短曲线相互之间平滑地连起来,需对其进行修饰(smoothing),这需要反复重新计算所有的曲线直至每一片段与其数据点的拟合间的连接可以接受。n结点结点(knots,校准物的浓度值)越多意味着数据处
10、理工作量的增大;n适用范围适用范围:当希望曲线密切遵循单个的校准物数据点时,或数据非常精密并有多个校准物时可选用,否则应避免使用;l样条插值 spline functionX将临近的校准点以一条曲线连起来,对整个标准曲线上各点间的短片段进将临近的校准点以一条曲线连起来,对整个标准曲线上各点间的短片段进行数学计算得到一条曲线,所获得的合成数学函数称为样条函数。行数学计算得到一条曲线,所获得的合成数学函数称为样条函数。线性插值 样条插值两种插值结果完全不同,因为插值是一个估计或猜测的过程,其意义在于,应用不同的估计规则导致不同的结果。样条插值与线性插值:样条插值与线性插值:n特点特点:完全拟合试验
11、数据;每一片段基本上与其他部分无关;n问题问题:对数据点的精密度和准确性依赖大;每一个片段都应有一个质控样本,而这往往是做不到的;无法完全解决hooks出现引起的不准确;有时较其他“复杂”模式更费时。n影响因素影响因素:确定某部分曲线的两个校准点的准确度和精密度。插值法插值法interpolative methods及其应用及其应用l曲线构建曲线构建:以符合数据点规律的经验模式构建曲线;l目标目标:反映对象整体的变化趋势;l达到最佳拟合最佳拟合的方法线性最小二乘准则;l拟合模式拟合模式:l双曲线模式 hyperbolic modell多项式模式 polynomial modellLog-Log
12、it转换lLogistic公式(两参数,四参数)u曲线拟合与回归曲线拟合与回归 curve fitting曲线拟合问题的提法:已知一组(二维)数据,即平面上已知一组(二维)数据,即平面上 n n个点(个点(xi,yi)xi,yi)i=1,i=1,n,n,寻求一个函数(曲线)寻求一个函数(曲线)y=f(x),y=f(x),使使 f(x)f(x)在某种准则下与所有在某种准则下与所有数据点最为接近,即曲线拟合得最好。数据点最为接近,即曲线拟合得最好。+f=a1+a2x+f=a1+a2x+a3x2+f=a1+a2x+a3x2+f=a1+a2/x+f=aebx+f=ae-bx1.1.通过机理分析建立数学
13、模型来确定通过机理分析建立数学模型来确定 f(x)f(x);2.2.将数据将数据 (x(xi i,y,yi i)i=1,)i=1,n n 作图,通过直观判断确定作图,通过直观判断确定 f(x)f(x):拟合函数的选择:拟合函数的选择:2阶曲线拟合与10阶曲线拟合n=1作为阶次,得到最简单的线性近似。通常称为线性回归;n=2作为阶次,得到一个2阶多项式;高阶多项式给出很差的数值特性,不应选择比所需的阶次高的多项式。拟合曲线的阶次:拟合曲线的阶次:l双曲线模式 hyperbolic curve:曲线形状:双曲线;假定数据拟合下式:y=a+b(1/x)或(1/y)=p+q(x)。l多项式模式:曲线形
展开阅读全文