书签 分享 收藏 举报 版权申诉 / 24
上传文档赚钱

类型微积分基本公式课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:3730484
  • 上传时间:2022-10-07
  • 格式:PPT
  • 页数:24
  • 大小:178.29KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《微积分基本公式课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    微积分 基本 公式 课件
    资源描述:

    1、积分上限函数积分上限函数定义定义 设函数设函数 f(x)在区间在区间 a,b 上连续上连续,x 为为 a,b上的变量上的变量,则则是定义在区间是定义在区间a,b上的函数上的函数,称其为称其为积分上限函数积分上限函数.()xaf t dt()S xOtyab()yf t x()()xaS xf t dt 例例:函数函数 f(t)=t 的积分上限函数的积分上限函数积分上限函数积分上限函数0021020()()()21(1)2(2)2xxxf t dttdtxxtdttdt xtOyyt()x x原函数存在定理原函数存在定理定理定理 如果如果 f(x)在在 a,b 连续连续,则积分上限函数则积分上限

    2、函数就是就是 f(x)在在 a,b 上的一个原函数上的一个原函数.即即:()()xaxf t dt()()xf x 或或()()xf x dx()()xf xx 例例:函数函数 f(t)=t 的积分上限函数的积分上限函数0()xxtdt()()()()xaxf t dtxf x 原函数存在定理原函数存在定理证证:()()()()()xxxaaxxxxxxf t dtf t dtf t dt 存在存在,x xx 可使可使()()xxxf t dtfx 00()()()()limlim()xxxxxfxxf xxx 思考思考:已知已知20()ln(1)xf t dtx ,求求 f(1).提示提示:

    3、()()()()xaxf t dtxf x 原函数存在定理原函数存在定理例例:求求20ln(1)xdtdtdx 例例:求求1cosxdtdtdx()()()()xaxf t dtxf x 牛顿莱布尼茨公式牛顿莱布尼茨公式定理定理 若若 F(x)是连续函数是连续函数 f(x)在区间在区间 a,b 上的上的一个原函数一个原函数,则则()()()().bbaaf x dxF xF bF a 例例:2222200202222xxdx 例例:求求22sin xdx 例例:求求221x dx 证证:设设 F(x)是是 f(x)的一个原函数的一个原函数,()(),()(),xf xF xxCxa b 当当

    4、x=a 得得()(),F aaC()()()().bbaaf x dxF xF bF a()()xaxf t dt 即即(x)也是也是 f(x)的原函数的原函数.牛顿莱布尼茨公式牛顿莱布尼茨公式()()()()xF xCF xF a()()()()babf t dtF bF a 又因为定积分的值与积分变量字母无关又因为定积分的值与积分变量字母无关,()()()()bbaaf x dxf t dtF bF a()()0()aaaf x dxF aC Q Q牛顿莱布尼茨公式牛顿莱布尼茨公式例例:求求10(2)xxedx 例例:求求12()exdxx ()()()().bbaaf x dxF xF

    5、bF a 例例:求求102(2)xdxx 例例:求求240(cossec)xx dx 牛顿莱布尼茨公式牛顿莱布尼茨公式例例:已知已知201()12xxf xxx ,求求20().f x dx xyO()f x12牛顿莱布尼茨公式牛顿莱布尼茨公式例例:已知已知212()01xxxf xex ,求求20().f x dx 牛顿莱布尼茨公式牛顿莱布尼茨公式sin x dx 例例:求求0cos x dx 例例:求求例例:求求2021xdx 例例:求求201x dx 221x dx 例例:求求例例:求求和和221t dt 2cosyx 在在0,2x 的平均值的平均值.牛顿莱布尼茨公式牛顿莱布尼茨公式例例

    6、:连续可导函数连续可导函数 f(x)有有 f(a)=3,f(b)=5,求求().bafx dx 例例:00()cossinsinsin0sin()cosxxxtdttxxxx 积分上限函数的导数积分上限函数的导数利用牛顿利用牛顿莱布尼茨公式反过来理解积分上限函数莱布尼茨公式反过来理解积分上限函数(注注:此为非正规方式此为非正规方式)()()()()()()()()()()xxaaxf t dtF tF xF axF xF aFxf x 设设:()()F tf t ,则则积分上限函数的导数积分上限函数的导数例例:试用牛顿试用牛顿莱布尼茨公式理解下列积分上限莱布尼茨公式理解下列积分上限函数函数.2

    7、1()xxt dt 0()cosxxtdt 20()cosxxtdt sin0()xtxe dt 积分上限函数的导数积分上限函数的导数定理定理:()()()();xadf t dtfxxdx 2222coscos()()2cosxadtdtxxxxdx 例例:也可用牛顿也可用牛顿莱布尼茨公式理解此定理莱布尼茨公式理解此定理222222cossinsin()sincossin()sin 2cosxxaaxatdttxadtdtxaxxdx 积分上限函数的导数积分上限函数的导数定理定理:()()()();xadf t dtfxxdx sin0 xtde dtdx 例例:求求22sinxdtdtdx

    8、t 例例:求求20tanxdttdtdx 例例:求求积分上限函数的导数积分上限函数的导数定理定理:设设()()()();xadf t dtfxxdx ()()()()()()();()()()()().xxaaxaf t dtF tFxF adf t dtFxF adxfxx ()()F tf t ,则则积分上限函数的导数积分上限函数的导数定理定理:()()()();xadf t dtfxxdx 1cos2xedtdtdx 例例:求求122ln(1)xdtdtdx 例例:求求定理定理:()()()()()()().xxdf t dtfxxfxxdx 积分上限函数的导数积分上限函数的导数2222

    9、sinsin()()sin()()2 sinsinxxxxexxdtdtxxeedxxxee 例例:2lncosxxdtdtdx 例例:求求020sinlimxxtdtx 例例:求求121(1)lim(1)xxt tdtx 例例:求求积分上限函数的导数积分上限函数的导数()()xaxf t dt 连续积分上限函数连续积分上限函数满足满足:()()0aaaf t dt lim()lim()0 xaxaxaxf t dt,则有则有020ln(1)limxxtdtx 例例:求求积分上限函数的导数积分上限函数的导数2cos120limxtxedtx 思考思考:200ln(1)lim1cosxxt dt

    10、x 思考思考:定积分的物理意义定积分的物理意义变速直线运动的路程变速直线运动的路程设某物体作直线运动设某物体作直线运动,已知速度已知速度 v(t)是时间间隔是时间间隔T1,T2 上时间上时间 t 的一个连续函数的一个连续函数,且且 v(t)0,则则物体在这段时间内所经过的路程为:物体在这段时间内所经过的路程为:2101lim()().nTiiTisvtv t dt 10Tt 1t2t3t.1it 2ntT.siti 变速直线运动的路程变速直线运动的路程2101lim()().nTiiTisvtv t dt 例例:某物体做匀加速直线运动某物体做匀加速直线运动,速度为速度为 v(t)=2+3t;问从问从 t=0 时刻到时刻到 t=10 时刻时刻,求其间物体的位移求其间物体的位移.10001lim()(23)170niiisvtt dt 01t2t3t.1it 10.siti 定积分的简单应用定积分的简单应用例例:已知某物体以速度已知某物体以速度2()342v ttt 作直线作直线运动运动,求该物体从求该物体从均速度均速度.1t 3t 到到经过的路程和平经过的路程和平思考思考:如何用积分上限函数表示路程函数如何用积分上限函数表示路程函数?

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:微积分基本公式课件.ppt
    链接地址:https://www.163wenku.com/p-3730484.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库