书签 分享 收藏 举报 版权申诉 / 40
上传文档赚钱

类型常用逻辑用语复习1课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:3729939
  • 上传时间:2022-10-07
  • 格式:PPT
  • 页数:40
  • 大小:211.01KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《常用逻辑用语复习1课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    常用 逻辑 用语 复习 课件
    资源描述:

    1、常用逻辑用语复常用逻辑用语复习习知识网络 常用逻辑常用逻辑用语用语命 题 及 其 关命 题 及 其 关系系简单的逻辑联结简单的逻辑联结词词全称量词与存在全称量词与存在量词量词四种命题四种命题充分条件与必要条件充分条件与必要条件量词量词全称量词全称量词存在量词存在量词含有一个量词的否定含有一个量词的否定或或且且非或非或并集并集交集交集补集补集运算运算命题命题的形式:的形式:“若若P,P,则则q”q”也可写成也可写成 “如果如果P,P,那么那么q”q”的形的形式式也可写成也可写成 “只要只要P,P,就有就有q”q”的形的形式式 通常通常,我们把这种形式的命题中的我们把这种形式的命题中的P叫做叫做命

    2、题的命题的条件条件,q叫做叫做结论结论.pq记做记做:用语言、符号或式子表达的,用语言、符号或式子表达的,可以判断可以判断真假真假的的陈述句陈述句称为称为命题命题其中判断为其中判断为真真的语句称为的语句称为真命题,真命题,判断为判断为假假的的语句语句称为称为假假命题命题一个一个符号符号条件的否定,记作条件的否定,记作“”。读作。读作“非非”。若若p 则则q逆否命题:逆否命题:原命题:原命题:逆命题:逆命题:否命题:否命题:若若q 则则p若若 p 则则 q若若 q 则则 p二、二、四四 种种 命命 题题结论结论1 1:要写出一个命题的另外三个命:要写出一个命题的另外三个命题关键是题关键是分清命题

    3、的题设和结论(即分清命题的题设和结论(即把原命题写成把原命题写成“若若P则则Q”的形式)的形式)注意:三种命题中最难写注意:三种命题中最难写 的是的是否命题。否命题。结论2:(1)“或或”的否定为的否定为“且且”,(2)“且且”的否定为的否定为“或或”,(3)“都都”的否定为的否定为“不不都都”。三、四种命题之间的三、四种命题之间的 关系关系原命题原命题若若p则则q逆命题逆命题若若q则则p否命题否命题若若p则则q逆否命题逆否命题若若q则则p互逆互逆互互否否互互否否互逆互逆(2)若其逆命题为真,则其否命题一定为若其逆命题为真,则其否命题一定为真。但其原命题、逆否命题不一定为真。真。但其原命题、逆

    4、否命题不一定为真。(1)原命题与逆否命题同真假。原命题与逆否命题同真假。(2)原命题的逆命题与否命题同真假。原命题的逆命题与否命题同真假。(1)原命题为真,则其逆否命题一定为原命题为真,则其逆否命题一定为真。但其逆命题、否真。但其逆命题、否命题不一定为真。命题不一定为真。四、命题真假性判断四、命题真假性判断结论:结论:反证法的一般步骤:反证法的一般步骤:(1)假设命题的结论不成立假设命题的结论不成立,即假即假 设结论的反面成立;设结论的反面成立;(2)从这个假设出发,经过推理从这个假设出发,经过推理论证,得出矛盾;论证,得出矛盾;(3)由矛盾判定假设不正确,由矛盾判定假设不正确,从而肯定命题的

    5、结论正确。从而肯定命题的结论正确。反设反设归谬归谬结论结论反证法反证法充要条件充要条件 如果命题如果命题“若若p则则q”为假,为假,则记作则记作p q。如果命题如果命题“若若p则则q”为真,则为真,则记作记作p q(或(或q p)。)。定义定义:如果如果pq ,则说则说p是是q的的充分条件充分条件,q是是p的必要条件的必要条件 p q,相当于,相当于P q,即即 P q 或或 P、q pq、分别表示某条件、分别表示某条件pq则称条件 是条件 的充分不必要条件则称条件 是条件 的充分不必要条件pq则称条件 是条件 的必要不充分条件则称条件 是条件 的必要不充分条件pq则称条件 是条件 的充要条件

    6、则称条件 是条件 的充要条件pq则称条件 是条件 的既充分也不必要条件则称条件 是条件 的既充分也不必要条件3pqqp)且且1pqqp)且且2pqqp)且且4pqqp)且且 认清条件和结论。认清条件和结论。考察考察p q和和q p的真假。的真假。可先简化命题可先简化命题。将命题转化为等价的逆否命题后再判断。将命题转化为等价的逆否命题后再判断。否定一个命题只要举出一个反例即可否定一个命题只要举出一个反例即可。充要条件定义充要条件定义:pqqppq如果既有,又有就记做称称:p是是q的的充分必要条件充分必要条件,简称简称充要条件充要条件显然显然,如果如果p是是q的充要条件的充要条件,那么那么q也是也

    7、是p的充要条件的充要条件p与与q互为充要条件互为充要条件(也可以说成也可以说成”p与与q等价等价”)1、充分且必要条件、充分且必要条件2、充分非必要条件、充分非必要条件3、必要非充分条件、必要非充分条件4、既不充分也不必要条件、既不充分也不必要条件各种条件的可能情况各种条件的可能情况充分非必要条件充分非必要条件必要非充分条件必要非充分条件1)A B且且B A,则,则A是是B的的2)若)若A B且且B A,则,则A是是B的的3 3)若)若A BA B且且B AB A,则,则A A是是B B的的既不充分也不必要条件既不充分也不必要条件充分且必要条件充分且必要条件4)A B且且B A,则,则A是是B

    8、的的3 3)若)若A BA B且且B AB A,则甲是乙的则甲是乙的2)若若A B且且B A,则甲是乙的,则甲是乙的1)若)若A B且且B A,则甲是乙的,则甲是乙的充分非必要条件充分非必要条件必要非充分条件必要非充分条件既不充分也不必要条件既不充分也不必要条件一般情况下若条件甲为一般情况下若条件甲为,条件乙为,条件乙为4)若)若A=B,则甲是乙的,则甲是乙的充分且必要条件充分且必要条件。1.1.在判断条件时,要特别注意的是它们能否互相在判断条件时,要特别注意的是它们能否互相推出,切不可不加判断以单向推出代替双向推出推出,切不可不加判断以单向推出代替双向推出.2.2.搞清搞清A A是是B B的

    9、的充分条件充分条件与与A A是是B B的的充分非必要条件充分非必要条件之间之间的区别与联系;的区别与联系;A A是是B B的的必要条件必要条件与与A A是是B B的的必要非充分条件必要非充分条件之间之间的区别与联系的区别与联系、注意几种方法的灵活使用:、注意几种方法的灵活使用:定义法、集合法、逆否命题法定义法、集合法、逆否命题法2:填写:填写“充分不必要,必要不充分,充要,充分不必要,必要不充分,充要,既不充分又不必要。既不充分又不必要。1)sinAsinB是是AB的的_条件。条件。2)在)在ABC中,中,sinAsinB是是 AB的的 _条件。条件。既不充分又不必要既不充分又不必要充要条件充

    10、要条件注、注、定义法(图形分析)定义法(图形分析)3、ab成立的充分不必要的条件是()成立的充分不必要的条件是()A.acbc B.a/cb/c C.a+cb+c D.ac2bc2D4 4.关于关于x x的不等式:的不等式:x x+x-1x-1m m的的 解集为解集为R R的充要条件是的充要条件是()()(A)m (A)m0 (B)m0 0 (B)m0 (C)m (C)m1 (D)m1 1 (D)m1 C练习练习2、1、设集合、设集合M=x|x2,N=x|x3,那么那么”xM或或xN”是是“xMN”的的 A.充要条件充要条件 B必要不充分条件必要不充分条件 C充分不必要充分不必要 D不充分不必

    11、要不充分不必要B注、注、集合法集合法2、aR,|a|3成立的一个必要不充分条件是成立的一个必要不充分条件是 A.a3 B.|a|2 C.a29 D.0a2A1.已知已知p是是q的必要而不充分条件,的必要而不充分条件,那么那么p是是q的的_.练习练习3、充分不必要条件充分不必要条件注、注、等价法(转化为逆否命题)等价法(转化为逆否命题)2:若:若A是是B的充要条件的充要条件,C是是B的充要条的充要条件件,则则A为为C的(的()条件)条件A.充要充要 B必要不充分必要不充分C充分不必要充分不必要 D不充分不必要不充分不必要集合法与转化法集合法与转化法1.1.已知已知P P:2x-32x-31 1;

    12、q q:1/(x1/(x2 2+x-6)+x-6)0 0,则则pp是是qq的的()(A)(A)充分不必要条件充分不必要条件 (B)(B)必要不充分条件必要不充分条件 (C)(C)充要条件充要条件 (D)(D)既不充分也不必要条件既不充分也不必要条件 2、已知已知p:|x+1|2,q:x25x6,则非则非p是非是非q的()的()A.充分不必要条件充分不必要条件B.必要不充分条件必要不充分条件 C.充要条件充要条件 D.既非充分又非必要条件既非充分又非必要条件练习练习4、AA我们再来看几个复杂的命题我们再来看几个复杂的命题:(1)10(1)10可以被可以被2 2或或5 5整除整除.(2)(2)菱形

    13、的对角线互相垂直菱形的对角线互相垂直且且平分平分.(3)0.5(3)0.5非非整数整数.“或或”,“”,“且且”,“”,“非非”称为逻辑联结词称为逻辑联结词.含有逻辑联结词的命题称为含有逻辑联结词的命题称为复合命题复合命题,不含逻不含逻辑联结词的命题称为辑联结词的命题称为简单命题简单命题.复合命题有以下三种形式复合命题有以下三种形式:(1)P(1)P且且q.q.(2)P或或q.(3)(3)非非p.p.1.3.1 1.3.1 逻辑联结词逻辑联结词 或、且、非或、且、非 一般地一般地,用逻辑联结词用逻辑联结词”且且”把命题把命题p和命题和命题q联结起来联结起来.就得就得到一个新命题到一个新命题,记

    14、作记作 pq读作读作”p且且q”.pq规定规定:当当p,q都是真命题时都是真命题时,是是真命题真命题;当当p,q两个命题中有一个命两个命题中有一个命题是假命题时题是假命题时,是假命题是假命题.p qp q全真为真全真为真,有假即假有假即假.pq 一般地一般地,用逻辑联结词用逻辑联结词”或或”把把命题命题p和命题和命题q联结起来联结起来.就得到一个就得到一个新命题新命题,记作记作 规定规定:当当p,q两个命题中有一个是真命题两个命题中有一个是真命题时时,是真命题是真命题;当当p,q两个命题中都是两个命题中都是假命题时假命题时,是假命题是假命题.p qpqp qpq 当当p,q两个命题中有一个是真

    15、命两个命题中有一个是真命题时题时,是真命题是真命题;当当p,q两个命两个命题都是假命题时题都是假命题时,是假命题是假命题.p qp q开关开关p,q的闭合的闭合对应命题的真假对应命题的真假,则整个电路的接则整个电路的接通与断开分别对通与断开分别对应命题应命题 的真与假的真与假.pq 一般地一般地,对一个命题对一个命题p全盘否定全盘否定,就得就得到一个新命题到一个新命题,记作记作 若若p是真命题是真命题,则则 必是假命题必是假命题;若若p是假命题是假命题,则则 必是真命题必是真命题.ppp读作读作”非非p”或或”p的否定的否定”“非非”命题对常见的几个正面词语的否定命题对常见的几个正面词语的否定

    16、.1.4 1.4 全称量词与全称量词与存在量词存在量词 短语短语”对所有的对所有的”对任意一对任意一个个”在逻辑中通常叫做在逻辑中通常叫做全称量词全称量词,并用符号并用符号“”表示表示.含有全称含有全称量词的命题量词的命题,叫做全称命题叫做全称命题,常见的全称量词还有常见的全称量词还有:“对所有的对所有的”,”对任意一个对任意一个”,”对一切对一切”,”对每一个对每一个”,”任给任给”,”所有的所有的”等等.短语短语”对所有的对所有的”对任意一对任意一个个”在逻辑中通常叫做在逻辑中通常叫做全称量词全称量词,并用符号并用符号“”表示表示.含有全称含有全称量词的命题量词的命题,叫做叫做全称命题全称

    17、命题.符号符号 全称命题全称命题”对对M中任意一个中任意一个x有有p(x)成立成立”可用符号简记为可用符号简记为读作读作”对任意对任意x属于属于M,有有p(x)成成立立”.,()xM p x 通通 常常,将将 含含 有有 变变 量量 x x的的 语语 句句 用用 p p(x x)、q q(x x)、r r(x x)表表 示示,变变 量量 x x的的 取取 值值 范范 围围 用用 M M表表 示示。1.4.2 1.4.2 存在量词存在量词 短语短语”存在一个存在一个”至少有一个至少有一个”在在逻辑上通常叫做逻辑上通常叫做存在量词存在量词,并用符号并用符号”表示表示.含有存在量词的命题含有存在量词

    18、的命题,叫做叫做特称命题特称命题.常见的存在量词还有常见的存在量词还有”有些有些”有有一个一个”有的有的”对某个对某个”等等.特称命题特称命题”存在存在M中的一个中的一个x,使使p(x)成成立立”可用符号简记为可用符号简记为读做读做”存在一个存在一个x,使使p(x)成立成立”.,().xM p x 1.4.3 1.4.3 含有一个量词含有一个量词 的命题的否定的命题的否定 从命题形式上看从命题形式上看,这三个全称命题的否定都这三个全称命题的否定都变成了特称命题变成了特称命题.一般地一般地,对于含有一个量词的全称命题的否对于含有一个量词的全称命题的否定定,有下面的结论有下面的结论:全称命题全称命

    19、题p:全称命题的否定是特称命题全称命题的否定是特称命题.,(),xM P x 它的否定 p:xM,p(x).从命题形式上看从命题形式上看,这三个特称命题的否定都变这三个特称命题的否定都变成了全称命题成了全称命题.一般地一般地,对于含有一个量词的特称命题的否定对于含有一个量词的特称命题的否定,有下面的结论有下面的结论:x xM M,p p(x x)特称命题特称命题:p它的否定它的否定:p x xM M,p p(x x)从命题形式上看从命题形式上看,这三个特称命题的否定都变这三个特称命题的否定都变成了全称命题成了全称命题.一般地一般地,对于含有一个量词的特称命题的否定对于含有一个量词的特称命题的否定,有下面的结论有下面的结论:x xM M,p p(x x)特称命题特称命题:p特称命题的否定是全称命题.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:常用逻辑用语复习1课件.ppt
    链接地址:https://www.163wenku.com/p-3729939.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库