应用多元统计分析第08章相应分析课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《应用多元统计分析第08章相应分析课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 应用 多元 统计分析 08 相应 分析 课件
- 资源描述:
-
1、第八章 相应分析第一节第一节 引引 言言 第二节第二节 列联表列联表 第三节第三节 相应分析的基本理论相应分析的基本理论 第四节第四节 相应分析中应注意的问题相应分析中应注意的问题 第五节第五节 实例分析与计算机实现实例分析与计算机实现 第一节第一节 引引 言言n相应分析相应分析(correspondence analysis)也叫对应分析,其特点是也叫对应分析,其特点是它所研究的变量可以是定性的。通常意义下的相应分析,是它所研究的变量可以是定性的。通常意义下的相应分析,是指对两个定性变量(因素)的多种水平进行相应性研究,因指对两个定性变量(因素)的多种水平进行相应性研究,因而它的应用越来越广
2、泛,现在这种方法已经成为常用的多元而它的应用越来越广泛,现在这种方法已经成为常用的多元分析方法之一。分析方法之一。n在社会、经济以及其他领域中,进行数据分析时经常要处理在社会、经济以及其他领域中,进行数据分析时经常要处理因素与因素之间的关系,及因素内部各个水平之间的相互关因素与因素之间的关系,及因素内部各个水平之间的相互关系。例如,评价某一个行业所属企业的经济效益,我们不仅系。例如,评价某一个行业所属企业的经济效益,我们不仅要研究因素要研究因素A,即企业按照经济效益好坏的分类情况,以及,即企业按照经济效益好坏的分类情况,以及要研究因素要研究因素B,即经济效益指标之间的关系,还要研究哪些,即经济
3、效益指标之间的关系,还要研究哪些企业与哪些经济效益指标更密切一些。这就需要相应分析的企业与哪些经济效益指标更密切一些。这就需要相应分析的方法,将经济效益指标和企业状况放在一起进行分类、作图,方法,将经济效益指标和企业状况放在一起进行分类、作图,以便更好的描述两者之间的关系,在经济意义上做出切合实以便更好的描述两者之间的关系,在经济意义上做出切合实际的解释。际的解释。n相应分析的思想首先由理查森(相应分析的思想首先由理查森(Richardson)和库德)和库德(Kuder)于)于1933年提出,后来法国统计学家让年提出,后来法国统计学家让-保罗保罗贝内贝内泽(泽(Jean-Paul Benzcr
4、i)等人对该方法进行了详细的论述)等人对该方法进行了详细的论述而使其得到了发展。为了把握相应分析方法的实质,本章将而使其得到了发展。为了把握相应分析方法的实质,本章将从列联资料入手,介绍一些基本概念和相应分析的基本理论,从列联资料入手,介绍一些基本概念和相应分析的基本理论,并让读者理解相应分析与独立性检验的关系,进一步明确对并让读者理解相应分析与独立性检验的关系,进一步明确对实际问题进行相应分析研究的必要性所在。实际问题进行相应分析研究的必要性所在。第二节第二节 列联表列联表一一 列联表的概念列联表的概念二二 有关记号有关记号 一、列联表的概念一、列联表的概念n在实际中经常要了解两组或多组因素
5、在实际中经常要了解两组或多组因素(或变量或变量)之间的关系。之间的关系。设有两组因素设有两组因素A和和B,其中因素,其中因素A包含包含r个水平,即个水平,即A1,A2,Ar;因素;因素B包含包含c个水平,即个水平,即B1,B2,Bc。又。又设有受制于这两个因素的载体设有受制于这两个因素的载体(或客体或客体)的集合总体的集合总体。我们希。我们希望通过对总体望通过对总体 关于这两组因素的有关资料关于这两组因素的有关资料(或抽样资料或抽样资料),来,来分析这两组因素的关系。分析这两组因素的关系。n例如,要考查在某个人群中关于吸烟或不吸烟例如,要考查在某个人群中关于吸烟或不吸烟(因素因素A)与得与得肺
6、癌或不得肺癌肺癌或不得肺癌(因素因素B)两组因素之间的关系。通常的作法两组因素之间的关系。通常的作法是,随机地从该人群中抽样,对这两种因素进行调查,设调是,随机地从该人群中抽样,对这两种因素进行调查,设调查了查了k个人,得到一个二维列联表,见表个人,得到一个二维列联表,见表8.1。n其中,其中,kij为调查的为调查的k人中出现因素人中出现因素A的第的第i个水平和因素个水平和因素B的第的第j个水平的人数。这样,我们就得到一个两因素,即吸烟与个水平的人数。这样,我们就得到一个两因素,即吸烟与是否得肺癌的是否得肺癌的2 2列联表。列联表。表表8.1 二维列联表二维列联表 n n 表表8.2 一般的二
7、维列联表一般的二维列联表二、有关记号二、有关记号n为了叙述方便,先引进一些基本概念和记号。为了叙述方便,先引进一些基本概念和记号。n设设K=(kij)r c为一个为一个r c的列联表的列联表(表表8.2),称元素,称元素kij为原始频为原始频数。将列联表数。将列联表K转化为频率矩阵,记为转化为频率矩阵,记为F=(fij)r c,见表,见表8.3。表表8.3 一般的二维频率表一般的二维频率表 n n n n 第三节第三节 相应分析的基本理论相应分析的基本理论一一 原始资料的变换原始资料的变换 二二 基于矩阵的分析过程基于矩阵的分析过程 n我们知道相应分析的主要目的是寻求列联表行因素我们知道相应分
8、析的主要目的是寻求列联表行因素A和列因和列因素素B的基本分析特征和它们的最优联立表示。为了实现行因的基本分析特征和它们的最优联立表示。为了实现行因素素A与列因素与列因素B最优联立表示,进一步剖析行因素最优联立表示,进一步剖析行因素A内部之间,内部之间,列因素列因素B内部之间,以及因素内部之间,以及因素A和列因素和列因素B之间的关系,这里之间的关系,这里将介绍原始的列联资料将介绍原始的列联资料K=(kij)r c变换成矩阵变换成矩阵Z=(zij)r c的具的具体过程,这样使得体过程,这样使得zij对因素对因素A和列因素和列因素B具有对等性,在此基具有对等性,在此基础上进行相应分析。础上进行相应分
9、析。一、原始资料的变换一、原始资料的变换n n 二、基于矩阵的分析过程二、基于矩阵的分析过程n(8.14)式表明)式表明Zuj为相对于特征值为相对于特征值j j的关于因素的关于因素A各水平构各水平构成的协差阵成的协差阵r的特征向量。这样我们就建立了相应分析中的特征向量。这样我们就建立了相应分析中R型因子分析和型因子分析和Q型因子分析的关系。也就是说,我们可以从型因子分析的关系。也就是说,我们可以从R型因子分析出发而直接得到型因子分析出发而直接得到Q型因子分析的结果。型因子分析的结果。n这里需要强调的是,由于这里需要强调的是,由于r和和c有相同的特征根,而这些特有相同的特征根,而这些特征根又表示
10、各个公共因子所提供的方差。那么,在因素征根又表示各个公共因子所提供的方差。那么,在因素B的的c维空间维空间Rc中的第一公共因子,第二公共因子直到第中的第一公共因子,第二公共因子直到第m个公共个公共因子与因素因子与因素A的的r维空间维空间Rr中相对于的各个主因子在总方差中中相对于的各个主因子在总方差中所占的百分比就完全相同。这样就可以用相同的因子轴同时所占的百分比就完全相同。这样就可以用相同的因子轴同时描述两个因素各个水平的情况,把两个因素的各个水平的状描述两个因素各个水平的情况,把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上。一般情形,我况同时反映到具有相同坐标轴的因子平面上。
11、一般情形,我们取两个公共因子,这样就可以在一张二维平面图上绘出两们取两个公共因子,这样就可以在一张二维平面图上绘出两个因素各个水平的情况,即可以直观地描述两个因素个因素各个水平的情况,即可以直观地描述两个因素A和因和因素素B以及各个水平之间的相关关系。以及各个水平之间的相关关系。第四节第四节 相应分析中应注意的问题相应分析中应注意的问题n我们知道相应分析是分析两组或多组变量之间关系的有效方我们知道相应分析是分析两组或多组变量之间关系的有效方法,在离散情况下,它是从资料出发通过建立因素间的二维法,在离散情况下,它是从资料出发通过建立因素间的二维或多维列联表来对数据进行分析。在此我们要问,这种分析
12、或多维列联表来对数据进行分析。在此我们要问,这种分析是否有意义,或者说对于所给的数据是否值得做这种相应分是否有意义,或者说对于所给的数据是否值得做这种相应分析。这一节我们将介绍相应分析与独立性检验的内在关系,析。这一节我们将介绍相应分析与独立性检验的内在关系,以此说明应用相应分析方法在解决实际问题时,避免盲目性。以此说明应用相应分析方法在解决实际问题时,避免盲目性。n n 第五节第五节 实例分析与计算机实现实例分析与计算机实现一一 利用利用SPSS进行相应分析进行相应分析实例实例1 二二 利用利用SPSS进行相应分析进行相应分析实例实例2 一、利用一、利用SPSS进行相应分析进行相应分析实例实
13、例1n数据来自数据来自SPSS软件自带数据集软件自带数据集voter.sav,为,为1992年美国大选年美国大选的部分数据。要求对选民的最高学历水平(的部分数据。要求对选民的最高学历水平(degree)和所支)和所支持的总统候选人(持的总统候选人(pres92)进行相应分析。)进行相应分析。(一)操作步骤(一)操作步骤1.正确打开数据集正确打开数据集voter.sav后,由后,由AnalyzeData ReductionCorrespondence Analysis可进入相应分析的主对可进入相应分析的主对话框(图话框(图8.1)。)。图图8.1 相应分析主界面相应分析主界面2.从左侧变量列表中
14、选择两个变量作为相应分析的两个维度。从左侧变量列表中选择两个变量作为相应分析的两个维度。这里我们选择这里我们选择pres92作为行维度,点击作为行维度,点击Row左侧的三角箭头左侧的三角箭头就可以看到在就可以看到在Row项下出现了项下出现了pres92(?),这时用鼠标选中,这时用鼠标选中该变量,其下方的该变量,其下方的Define Range子对话框激活,点击后出现子对话框激活,点击后出现变量水平设置窗口(图变量水平设置窗口(图8.2)。分为上下两个部分:)。分为上下两个部分:Category range for row variable:pres92和和Category Constrain
15、ts。这里要分析所有的三位总统候选人和选民的学历水平的关系,这里要分析所有的三位总统候选人和选民的学历水平的关系,所以在所以在Minimum value中填入中填入1,在,在Maximum value中填入中填入3,之后点击之后点击Update按钮。就可以在下方的按钮。就可以在下方的Category Constraints栏中看到,后续分析中的行变量仅包含栏中看到,后续分析中的行变量仅包含3个类目,分别是个类目,分别是1、2和和3。图图8.2 Define Row Range子对话框子对话框 在右侧还有三个单选项:在右侧还有三个单选项:None表示没有任何约束;表示没有任何约束;Categor
16、ies must be equal可用于指定某些类目的得分必须相同,最多可以可用于指定某些类目的得分必须相同,最多可以设置有效类目的个数减设置有效类目的个数减1个得分相等的类目,如本例中最多可个得分相等的类目,如本例中最多可以设置以设置2个类目得分相等;个类目得分相等;Category is supplemental表示某些表示某些类目不参加相应分析但是会在图形中标示。这里我们不对分类类目不参加相应分析但是会在图形中标示。这里我们不对分类进行任何约束,点击进行任何约束,点击Continue按钮后回到主对话框。按钮后回到主对话框。类似的可以指定类似的可以指定degree的有效类目最小值为的有效类
17、目最小值为0,最大值为,最大值为4。3.点击点击Model按钮,指定相应分析结果的维数。(图按钮,指定相应分析结果的维数。(图8.3)(1)Dimensions in solution。默认为。默认为2,最大可以设置为各变量,最大可以设置为各变量 中的最少类目数减中的最少类目数减1。(2)选择距离测度的方式)选择距离测度的方式Distance Measure。有。有Chi square 和和Euclidean两种,定性变量应该用两种,定性变量应该用Chi square。(3)标准化方法)标准化方法Standardization Method。图图8.3 Model子对话框子对话框 (4)正态化
展开阅读全文