湘教版九上数学52统计的简单应用课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《湘教版九上数学52统计的简单应用课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湘教版九上 数学 52 统计 简单 应用 课件 下载 _九年级上册_湘教版(2024)_数学_初中
- 资源描述:
-
1、第5章用样本推断总体5.2 统计的简单应用学习目标【学习目标】1能通过样本的频率分布推断总体的频率分布2能解释统计结果,根据结果对总体做出推断3体验统计思想方法在各类实际问题中的简单应用【学习重点】用样本的频率分布推断总体的频率分布【学习难点】统计结果的解释和统计方法的应用。情景导入回顾:1把所研究问题有关的全体对象称为_,把组成总体的每一个对象称为_2从总体中抽取的一部分个体就组成了一个_,样本中个体的个数叫作_总体个体样本样本容量 在日常生活中,我们经常遇到各种各样的“率”:一个国家的森林覆盖率、一个省的婴儿出生率、一个电视栏目的收视率、一种产品的合格率等等.那么这些“率”到底能够说明什么
2、呢?从统计的观点看,一个“率”就是总体中具有某些特性的个体在总体中所占的百分比.当要考察的总体所含个体数量较多时,“率”的计算就比较复杂,有什么方法来对“率”作出合理的估计吗?知识模块一知识模块一 用样本的用样本的“率率”估计总体的估计总体的“率率”在实践中,我们常常通过简单随机抽样,用样本的“率”去估计总体相应的“率”.例如工厂为了估计一批产品的合格率,常常从该批产品中随机抽取一部分进行检查,通过对样本进行分析,从而推断出这批产品的合格率.可以通过简单随机抽样,先计算出样本的“率”,再用样本的“率”去估计总体相应的“率”.自学互研例1:某工厂生产了一批产品,从中随机抽取1000件来检查,发现
3、有10件次品.试估计这批产品的次品率.解:由于是随机抽取,即总体中每一件产品都有相同的机会被抽取,因此,随机抽取的1000件产品组成了一个简单随机样本,因而可以用这个样本的次品率 作为对这批产品的次品率的估计,从而这批产品的次品率为1%.1001100010范例想一想:某地为提倡节约用水,准备实行“阶梯水价计费”方式,用户月用水量不超出基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费.为更好地决策,自来水公司随机抽取了部分用户的月用水量数据,并将这些数据绘制成了如图所示的统计图(每组数据包括右端点但不包括左端点).如果自来水公司将基本月用水量定为每户每月12t,那么该地20万
4、用户中约有多少用户能够全部享受基本价格?自学互研 由于将基本月用水量定为每户每月12t,而被抽取的100户用户中,有66户(10+20+36)没有超出基本月用水量,因此被随机抽取的用户中有66%的用户能够全部享受基本价格.由于这100户用户是随机抽取的,因此这100户的月用水量就构成了一个简单随机样本,从而可以用这个样本中的能够全部享受基本价格的用户比例去估计总体相应的比例.因此,估计在该地20万用户中约有2066%=13.2(万户)的用户能够全部享受基本价格.例2 下表给出了某校500名12岁男孩中用随机抽样得出的100人的身高h的分组数据(单位:cm):(1)列出样本频率分布表(2)估计该
5、校500名12岁男孩中身高小于134cm的人数.范例解:()根据题意,可得如下样本频率分布表.自学互研(2)由上表可知,身高小于134 cm 的男孩出现的频率为0.04+0.07+0.08=0.19.又随机抽取的这100名男孩的身高组成了一个简单随机样本,因而可以用这个样本的频率0.19作为该校500名12岁男孩相应频率的估计.因此,估计该校500名12岁男孩中身高小于134 cm的人数约为500 0.19=95(人).自学互研自学互研1例1中随机抽取的1000件产品组成了一个_,所以1000件产品的次品率能作为整批次品的次品率2“动脑筋”中:先求该地100户中约有_户的用户能够全部享受基本价
展开阅读全文