spss之统计挖掘第11章缺失值分析课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《spss之统计挖掘第11章缺失值分析课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- spss 统计 挖掘 11 缺失 分析 课件
- 资源描述:
-
1、IBM-SPSS第第11章章 缺失值分析缺失值分析 背景背景在资料收集过程中,由于各种原因可能导致数据收集不全,就会产生缺失值,且这种情况往往无法避免。因此,缺失值分析是数据处理工作中常见的问题之一,如果处理不当,会导致部分分析过程简单地从分析中丢弃这些有缺失的个案;也可能会使分析结果精度降低,出现偏倚甚至是错误的结论;另外,很多统计过程背后的假设都基于完整的个案,而缺失值可能使所需的理论复杂化,部分分析过程无法完成。缺失值分析有助于解决由不完整的数据造成的若干问题,尽可能全面、有效地利用整个数据库。分类分类按照数据缺失形式分单元缺失:指针对需调查的个案进行调查而没有得到个案信息。这种缺失在数
2、据分析阶段常常无能为力。项目缺失:指在调查内容中某些变量的观测结果有缺失。分类分类按照缺失机制与方式分 完全随机缺失(Missing Completely at Random,MCAR)指已评价的结果或即将要进行的评价结果中,研究对象的缺失率是独立的。即缺失现象完全随机发生,与自身或其他变量的取值无关。随机缺失(Missing at Random,MAR)指缺失数据的发生与数据库中其他无缺失变量的取值有关。某一观察值缺失的概率仅依赖已有的观察结果,不依赖未观察到的结果。MAR是最常见的缺失机制。非随机缺失(Missing Not at Radom,MNAR)指数据的缺失不仅与其他变量的取值有关
3、,缺失率与缺失数据有关,也和自身有关。这种缺失大都不是由偶然因素所造成的,常常是不可忽略的。SPSS中的缺失值处理方法中的缺失值处理方法1删除缺失值删除缺失值 最常见、最简单的处理缺失数据的方法,使用这种方法时,如果任何个案在某一变量含有缺失数据的话,就把相对应的个案从分析中剔除。如果缺失值所占比例比较小的话,这一方法十分有效。然而,这种方法却有很大的局限性,它是以减少样本量来换取信息的完备,会造成资源的大量浪费,丢弃了大量隐藏在这些对象中的信息。SPSS中的缺失值处理方法中的缺失值处理方法2缺失值替代缺失值替代 即“转换”选项卡中的“替换缺失值”菜单过程。此过程将所有的记录看成一个序列,然后
4、采用某种指标对缺失值进行填充,它实际上专门用于解决时间序列模型中的缺失值问题。虽然其中的一些填充方法也可以用于普通数据,但相比之下,如果在非序列数据中使用该过程可能得不偿失,应当谨慎使用。常用的填充方式有算术均数,缺失值邻近点的算术均数,中位数,线性插入等。SPSS中的缺失值处理方法中的缺失值处理方法3缺失值分析缺失值分析 缺失值的描述和快速诊断:用灵活的诊断报告来评估缺失值问题的严重性,用户可以观察到它们在哪些变量中出现,比例为多少,是否与其他变量取值有关,从而得知这些缺失值出现是否会影响分析结论。得到更精确的统计量:提供了多种方法用于估计含缺失值数据的均值、相关矩阵或协方差矩阵,通过这些方
展开阅读全文