主成分分析法课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《主成分分析法课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 成分 分析 课件
- 资源描述:
-
1、主成分分析法主成分分析法一、主成分分析法概述二、主成分分析法的基本原理三、主成分分析法的应用四、主成分分析法的步骤和方法五、主成分分析法的操作流程六、主成分分析法的结果分析七、应用主成分分析法的注意事项八、与因子分析法的区别一、主成分分析法概述一、主成分分析法概述u每个人都会遇到有很多变量的数据。u这些数据的共同特点是变量很多,在如此多的变量之中,有很多是相关的。人们希望能够找出它们的少数“代表”来对它们进行描述。u介绍两种把变量维数降低以便于描述、理解和分析的方法:主成分分析(principal component analysis)和因子分析(factor analysis)。实际上主成分
2、分析可以说是因子分析的一个特例。u定义:主成分分析(Principal Components Analysis,PCA)也称为主分量分析,是一种通过降维来简化数据结构的方法,即如何把多个变量(变量)转化为少数几个综合变量(综合变量),而这几个综合变量可以反映原来多个变量的大部分信息。主成分:把相关的变量变为无关的主成分。u 注意:进行主成分的变量之间必须要有相关性,经过分析后变量之间独立。二、主成分分析法基本原理二、主成分分析法基本原理u主成分分析就是设法将原来众多具有一定相关性的变量(如p个变量),重新组合成一组新的相互无关的综合变量来代替原来变量。怎么处理?u通常数学上的处理就是将原来p个
3、变量作线性组合作为新的综合变量。如何选择?u如果将选取的第一个线性组合即第一个综合变量记为F1,自然希望F1尽可能多的反映原来变量的信息。怎样反映?u最经典的方法就是用方差来表达,即var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中所选取的F1应该是方差最大的,故称之为第一主成分(principal component I)。u如果第一主成分不足以代表原来p个变量的信息,再考虑选取F2即第二个线性组合。F2称为第二主成分(principal component II)。F1和F2的关系?1 1、基于类型的古村落旅游竞争力分析基于类型的古村落旅游竞争力分析本文以社区参与型古村落为
4、主要研究对象,采用主成分分析法、层次熵法等确定主要的旅游评价指标并获得其贡献指数。三、主成分分析法的应用三、主成分分析法的应用2 2、基于主成分分析的新疆与全国旅游产业竞争力评价基于主成分分析的新疆与全国旅游产业竞争力评价 本文采用主成分分析(PCA)方法,对新疆旅游业的竞争能力与全国其他省、区、直辖市进行比较。对全国31个省、区、直辖市的310个原始数据,根据PCA方法的原理和步骤进行计算机处理,可以得到主成分因子的特征值、贡献率与累积贡献率及因子提取结果。前3个主成分因子的累积贡献率达87.154%,根据累积贡献率大于85%的主成分因子选取原则,选择前3个主成分因子,而且选择的3个主成分因
5、子相互之间不存在相关性。四、主成分分析法的步骤四、主成分分析法的步骤1)数据归一化处理:数据标准化(Z)2)计算相关系数矩阵R:3)计算特征值;特征值越大说明重要程度越大。4)计算主成分贡献率及方差的累计贡献率;5)计算主成分载荷与特征向量:主成分的负荷值大小反映了主成分因子对可测变量的影响程度;载荷值越大说明此变量对主成分的解释越多,及贡献越大。6)写出主成分模型u主成分选取的条件:(1)特征值(特征值1);(2)方差的累计贡献率。(前K个主成分的方差累计贡献率达到了80%或85%,也可以说累计贡献率80%或85%)(较多)。两个条件满足其一就可以了,究竟以哪个为主依个人情况而定或根据实际情
6、况两个结合使用。如果前K个主成分的累计贡献率达到了85%,则表明取前K个主成分基本包含了全部测量指标所具有的信息,从而达到了变量降维的目的。五、主成分分析法的操作流程uKMO检验是在主成份分析前对数据的分析:KMO越接近于1越好,等于相关系数,0.5就可以。1、相关系数R:KMO检验六、主成分分析法的结果分析六、主成分分析法的结果分析2、确定主成分、确定主成分本操作是选择以特征根大于1为标准提取主成分,提取了4个主成分。按照累积方差的观点,应该提取80%或85%的值,本例题提取5个主成分,其累积方差贡献率为85.644,应该提取前五个主成分。两个条件都满足3、写出主成分模型写出主成分模型 2、
展开阅读全文