一节二阶与三阶行列式课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《一节二阶与三阶行列式课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一节 行列式 课件
- 资源描述:
-
1、扬州大学数学科学学院用消元法解二元线性方程组用消元法解二元线性方程组 .,22221211212111bxaxabxaxa 1 2 :122a,2212221212211abxaaxaa :212a,1222221212112abxaaxaa ,得,得两式相减消去两式相减消去2x;212221121122211baabxaaaa )(,得,得类似地,消去类似地,消去1x,211211221122211abbaxaaaa )(时,时,当当021122211 aaaa方程组的解为方程组的解为,211222112122211aaaabaabx )(3.211222112112112aaaaabbax
2、 由方程组的四个系数确定由方程组的四个系数确定.由四个数排成二行二列(横排称行、竖排由四个数排成二行二列(横排称行、竖排称列)的数表称列)的数表)4(22211211aaaa)5(42221121121122211aaaaaaaa行行列列式式,并并记记作作)所所确确定定的的二二阶阶称称为为数数表表(表表达达式式 即即.2112221122211211aaaaaaaaD11a12a22a12a主对角线主对角线副对角线副对角线2211aa 1221.a a二阶行列式的计算二阶行列式的计算若记若记,22211211aaaaD .,22221211212111bxaxabxaxa对于二元线性方程组对于
3、二元线性方程组系数行列式系数行列式 .,22221211212111bxaxabxaxa22211211aaaaD .,22221211212111bxaxabxaxa,2221211ababD .,22221211212111bxaxabxaxa,22211211aaaaD .,22221211212111bxaxabxaxa,2221211ababD .,22221211212111bxaxabxaxa.2211112babaD 则二元线性方程组的解为则二元线性方程组的解为,2221121122212111aaaaababDDx 注意注意 分母都为原方程组的系数行列式分母都为原方程组的系数
4、行列式.2221121122111122aaaababaDDx .12,12232121xxxx求解二元线性方程组求解二元线性方程组解解1223 D)4(3 ,07 112121 D,14 121232 D,21 DDx11,2714 DDx22.3721 333231232221131211)5(339aaaaaaaaa列的数表列的数表行行个数排成个数排成设有设有,312213332112322311322113312312332211)6(aaaaaaaaaaaaaaaaaa 333231232221131211aaaaaaaaa(6 6)式称为数表()式称为数表(5 5)所确定的)所确定
5、的.323122211211aaaaaa .312213332112322311aaaaaaaaa (1)(1)沙路法沙路法三阶行列式的计算三阶行列式的计算322113312312332211aaaaaaaaa D333231232221131211aaaaaaaaaD .列标列标行标行标333231232221131211aaaaaaaaaD 333231232221131211aaaaaaaaa332211aaa.322311aaa 注意注意 红线上三元素的乘积冠以正号,蓝线上三红线上三元素的乘积冠以正号,蓝线上三元素的乘积冠以负号元素的乘积冠以负号说明说明1 对角线法则只适用于二阶与三阶
6、行列式对角线法则只适用于二阶与三阶行列式322113aaa 312312aaa 312213aaa 332112aaa 如果三元线性方程组如果三元线性方程组 ;,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa的系数行列式的系数行列式333231232221131211aaaaaaaaaD ,0 利用三阶行列式求解三元线性方程组利用三阶行列式求解三元线性方程组 2 2.三阶行列式包括三阶行列式包括3!3!项项,每一项都是位于不同行每一项都是位于不同行,不同列的三个元素的乘积不同列的三个元素的乘积,其中三项为正其中三项为正,三项为三项为负负.
7、;,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa,3332323222131211aabaabaabD 若记若记333231232221131211aaaaaaaaaD 或或 121bbb ;,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa,3332323222131211aabaabaabD 记记,3332323222131211aabaabaabD 即即 ;,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa333231232
8、221131211aaaaaaaaaD ;,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa,3333123221131112abaabaabaD 得得 ;,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa333231232221131211aaaaaaaaaD ;,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa,3333123221131112abaabaabaD 得得 ;,3333232131232322212113132121
9、11bxaxaxabxaxaxabxaxaxa.3323122221112113baabaabaaD ,3333123221131112abaabaabaD .3323122221112113baabaabaaD 则三元线性方程组的解为则三元线性方程组的解为:,11DDx ,22DDx .33DDx 333231232221131211aaaaaaaaaD ,3332323222131211aabaabaabD 2-43-122-4-21D 计算三阶行列式计算三阶行列式按对角线法则,有按对角线法则,有 D4)2()4()3(12)2(21 )3(2)4()2()2(2411 24843264
10、.14 .094321112 xx求解方程求解方程方程左端方程左端1229184322 xxxxD,652 xx解得解得由由052 xx3.2 xx或或例例4 4 解线性方程组解线性方程组 .0,132,22321321321xxxxxxxxx由于方程组的系数行列式由于方程组的系数行列式111312121 D 111 132 121 111 122 131 5 ,0 同理可得同理可得1103111221 D,5 1013121212 D,10 0111122213 D,5 故方程组的解为故方程组的解为:,111 DDx,222 DDx.133 DDx 二阶和三阶行列式是由解二元和三元线性方二阶
11、和三阶行列式是由解二元和三元线性方程组引入的程组引入的.对角线法则对角线法则二阶与三阶行列式的计算二阶与三阶行列式的计算.2112221122211211aaaaaaaa ,312213332112322311322113312312332211aaaaaaaaaaaaaaaaaa 333231232221131211aaaaaaaaa 使使求一个二次多项式求一个二次多项式,xf .283,32,01 fff解解设所求的二次多项式为设所求的二次多项式为 ,2cbxaxxf 由题意得由题意得 ,01 cbaf ,3242 cbaf ,28393 cbaf得一个关于未知数得一个关于未知数 的线性方
12、程组的线性方程组,cba,又又,020 D.20,60,40321 DDD得得,21 DDa,32 DDb13 DDc故所求多项式为故所求多项式为 .1322 xxxf扬州大学数学科学学院引例引例用用1、2、3三个数字,可以组成多少个没三个数字,可以组成多少个没有重复数字的三位数?有重复数字的三位数?解解1 2 3123百位百位3种放法种放法十位十位1231个位个位12 32种放法种放法1种放法种放法种放法种放法.共有共有6123 同的排法?同的排法?,共有几种不,共有几种不个不同的元素排成一列个不同的元素排成一列把把 n问题问题定义定义把把 个不同的元素排成一列,叫做这个不同的元素排成一列,
13、叫做这 个个元素的全排列(或排列)元素的全排列(或排列).nn 个不同的元素的所有排列的种数,通常个不同的元素的所有排列的种数,通常用用 表示表示.nnP由引例由引例1233 P.6 nPn)1(n)2(n123 !.n 同理同理 在一个排列在一个排列 中,若数中,若数 则称这两个数组成一个逆序则称这两个数组成一个逆序.nstiiiii21stii 例如例如 排列排列32514 中,中,定义定义 我们规定各元素之间有一个标准次序我们规定各元素之间有一个标准次序,n 个个不同的自然数,规定由小到大为不同的自然数,规定由小到大为标准次序标准次序.排列的逆序数排列的逆序数3 2 5 1 4逆序逆序逆
14、序逆序逆序逆序定义定义 一个排列中所有逆序的总数称为此排列的一个排列中所有逆序的总数称为此排列的逆序数逆序数.例如例如 排列排列32514 中,中,3 2 5 1 4逆序数为逆序数为31010故此排列的故此排列的逆序数为逆序数为3+1+0+1+0=5.计算排列逆序数的方法计算排列逆序数的方法方法方法1 1分别计算出排在分别计算出排在 前面比它大的数前面比它大的数码之和即分别算出码之和即分别算出 这这 个元素个元素的逆序数,这个元素的逆序数的总和即为所求的逆序数,这个元素的逆序数的总和即为所求排列的逆序数排列的逆序数.n,n,121 n,n,121 n逆序数为奇数的排列称为逆序数为奇数的排列称为
15、奇排列奇排列;逆序数为偶数的排列称为逆序数为偶数的排列称为偶排列偶排列.排列的奇偶性排列的奇偶性分别计算出排列中每个元素前面比它大的数码分别计算出排列中每个元素前面比它大的数码个数之和,即算出排列中每个元素的逆序数,个数之和,即算出排列中每个元素的逆序数,这每个元素的逆序数之总和即为所求排列的逆这每个元素的逆序数之总和即为所求排列的逆序数序数.方法方法2 2例例1 1 求排列求排列32514的逆序数的逆序数.解解在排列在排列32514中中,3排在首位排在首位,逆序数为逆序数为0;2的前面比的前面比2大的数只有一个大的数只有一个3,故逆序数为故逆序数为1;3 2 5 1 40 1 0 3 1于是
16、排列于是排列32514的逆序数为的逆序数为13010 t.5 5的前面没有比的前面没有比5大的数大的数,其逆序数为其逆序数为0;1的前面比的前面比1大的数有大的数有3个个,故逆序数为故逆序数为3;4的前面比的前面比4大的数有大的数有1个个,故逆序数为故逆序数为1;例例2 2 计算下列排列的逆序数,并讨论它们的奇计算下列排列的逆序数,并讨论它们的奇偶性偶性.2179863541解解453689712544310010 t18 此排列为此排列为偶排列偶排列.54 0100134 321212 nnn解解12 ,21 nn当当 时为偶排列;时为偶排列;14,4 kkn当当 时为奇排列时为奇排列.34
17、,24 kkn 1 nt 2 n 32121 nnn1 n 2 n kkkkkk132322212123 解解0 t kkk 21112,2k 当当 为偶数时,排列为偶排列,为偶数时,排列为偶排列,k当当 为奇数时,排列为奇排列为奇数时,排列为奇排列.k1 1 2 kkk 112 kkkkkk13232221212 0 1 1 2 2 k2 2 排列具有奇偶性排列具有奇偶性.3 计算排列逆序数常用的方法有计算排列逆序数常用的方法有2 种种.1 1 个不同的元素的所有排列种数为个不同的元素的所有排列种数为n!.n分别用两种方法求排列分别用两种方法求排列16352487的逆序数的逆序数.思考题解答
18、思考题解答解解用方法用方法1 11 6 3 5 2 4 8 7 用方法用方法2 201012130 t8 由前向后求每个数的逆序数由前向后求每个数的逆序数.810231100 t扬州大学数学科学学院三阶行列式三阶行列式333231232221131211aaaaaaaaaD 322113312312332211aaaaaaaaa 332112322311312213aaaaaaaaa 说明说明(1)三阶行列式共有)三阶行列式共有 项,即项,即 项项6!3(2)每项都是位于不同行不同列的三个元素的)每项都是位于不同行不同列的三个元素的乘积乘积(3)每项的正负号都取决于位于不同行不同列)每项的正负
19、号都取决于位于不同行不同列 的三个元素的下标排列的三个元素的下标排列例如例如322113aaa列标排列的逆序数为列标排列的逆序数为 ,211312 t322311aaa列标排列的逆序数为列标排列的逆序数为 ,101132 t偶排列偶排列奇排列奇排列正号正号,负号负号.)1(321321333231232221131211 ppptaaaaaaaaaaaannnnnnnppptaaaaaaaaaDaaannnn212222111211212.)1(21 记记作作的的代代数数和和个个元元素素的的乘乘积积取取自自不不同同行行不不同同列列的的阶阶行行列列式式等等于于所所有有个个数数组组成成的的由由定义
20、定义).det(ija简记作简记作的元素的元素称为行列式称为行列式数数)det(ijijaa为这个排列的逆序数为这个排列的逆序数的一个排列,的一个排列,为自然数为自然数其中其中tnpppn2121 nnnnppppppppptnnnnnnaaaaaaaaaaaaD212121212122221112111 说明说明1、行列式是一种特定的算式,它是根据求解方、行列式是一种特定的算式,它是根据求解方程个数和未知量个数相同的一次方程组的需要而程个数和未知量个数相同的一次方程组的需要而定义的定义的;2、阶行列式是阶行列式是 项的代数和项的代数和;n!n3、阶行列式的每项都是位于不同行、不同阶行列式的每
21、项都是位于不同行、不同列列 个元素的乘积个元素的乘积;nn4、一阶行列式一阶行列式 不要与绝对值记号相混淆不要与绝对值记号相混淆;aa 5、的符号为的符号为nnpppaaa2121 .1t 例例1 1计算对角行列式计算对角行列式0004003002001000分析分析展开式中项的一般形式是展开式中项的一般形式是43214321ppppaaaa41 p若若,011 pa从而这个项为零,从而这个项为零,所以所以 只能等于只能等于 ,1p4同理可得同理可得1,2,3432 ppp解解0004003002001000 432114321 t.24 即行列式中不为零的项为即行列式中不为零的项为.aaaa
22、41322314例例2 2 计算上计算上三角行列式三角行列式nnnnaaaaaa00022211211分析分析展开式中项的一般形式是展开式中项的一般形式是.2121nnpppaaa,npn,11 npn,1,2,3123 ppnpn所以不为零的项只有所以不为零的项只有.2211nnaaannnnaaaaaa00022211211 nnntaaa2211121 .2211nnaaa 解解例例3?8000650012404321 D443322118000650012404321aaaaD .1608541 同理可得同理可得下三角行列式下三角行列式nnnnnaaaaaaa3212221110000
23、0.2211nnaaa n 21 .12121nnn ;21n n 21例例4 4 证明证明对角行列式对角行列式n 21 11,212111nnnnntaaa .12121nnn 证明证明第一式是显然的第一式是显然的,下面证第二式下面证第二式.若记若记,1,iniia 则依行列式定义则依行列式定义11,21nnnaaa 证毕证毕例例5 5设设nnnnnnaaaaaaaaaD2122221112111 nnnnnnnnnnabababaabababaaD221122222111112112 证明证明.21DD 证证由行列式定义有由行列式定义有 nnnnppppppppptnnnnnnaaaaaa
24、aaaaaaD2121212121222211121111 nnnnnnnnnnabababaabababaaD221122222111112112 nnnnpppnnppppppppptbaaa 2121212121211由于由于,2121npppn 所以所以 .12211212121DaaaDnnnnpppppppppt nnnnpppnnppppppppptbaaaD 21212121212121 nnnnppppppppptaaa212121211 故故1、行列式是一种特定的算式,它是根据求解、行列式是一种特定的算式,它是根据求解方程个数和未知量个数相同的一次方程组的需方程个数和未知量
25、个数相同的一次方程组的需要而定义的要而定义的.2、阶行列式共有阶行列式共有 项,每项都是位于不同项,每项都是位于不同行、不同列行、不同列 的的 个元素的乘积个元素的乘积,正负号由下标排正负号由下标排列的逆序数决定列的逆序数决定.nn!n已知已知 1211123111211xxxxxf .3的系数的系数求求 x思考题解答思考题解答解解含含 的项有两项的项有两项,即即3x 1211123111211xxxxxf 对应于对应于 4334221112341aaaat 443322111aaaat ,1344332211xaaaat 343342211123421xaaaat .13 的系数为的系数为故
展开阅读全文