44探索三角形相似的条件课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《44探索三角形相似的条件课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 44 探索 三角 形相 似的 条件 课件
- 资源描述:
-
1、探索三角形相似的条件相似三角形的相关概念l三个角对应相等,三条边对应成比例的两个三角形,叫做相似三角形(similar trianglec).l相似三角形的各对应角相等,各对应边对应成比例.l相似比等于1的两个三角形全等.l注意:l要把表示对应角顶点的字母写在对应的位置上.l反之,写在对应位置上的字母就是对应角的顶点!l由于相似三角形与其位置无关,因此,能否弄清对应是正确解答的前提和关键.判定三角形相似的方法l判定两个三角形相似的方法:l两角对应相等的两个三角形相似.l三边对应成比例的两个三角形相似.类比三角形全等的判定方法:边角边(SAS);角边角(ASA);角角边(AAS);边边边(SSS
2、);斜边直角边(HL).你还能得出判定三角形相似的其它方法吗?相似与全等类比新化旧 三角形全等的判定方法:边角边(SAS);角边角(ASA);角角边(AAS);边边边(SSS);斜边直角边(HL).由角边角(ASA);角角边(AAS);可知,有两个角对应相等的两个三角形相似;由边边边(SSS)可知:有三边对应成比例的两个三角形相似;由边角边(SAS)可猜想:两边对应成比例,且夹角相等的两个三角形相似;由斜边直角边(HL)可猜想:斜边直角边对应成比例的两个直角三角形相似.我们已经把前两个猜想变为现实,剩余的还有问题吗.亲历知识的发生和发展 问题三:如果 ABC与 ABC有一个角相等,且两边对应成
3、比例,那么它们一定相似吗?(1)如果这个角是这两边的夹角,那么它们一定相似吗?我们一起来动手:画 ABC与ABC使A=A,设法比较B 与B的大小,C与C的大小.ABC与ABC相似吗?说说你的理由.改变k值的大小(如1 3),再试一试.通过上面的活动,你猜出了什么结论?).23(如给定的值都等于和kCAACBAAB判定三角形相似的方法之三 两边对应成比例且夹角相等的两个三角形相似.如图,在 ABC与ABC中,如果那么 ABCABC(两边对应成比例且夹角相等的两个三角形相似.)CBAA B C.CAACBAABw这又是一个用来判定两个三角形相似的方法,但使用频率不是很高,务必引起重视.且A=A,敢
4、问“路”在何 方 下面两个三角形是否相似?为什么?解:在ABC和AEF中.212AEAB ABC AEF.(两边对应成边成比例且夹角相等的两个三角形相似.).236AFAC.AFACAEABABCE11F33且A是公共角 两角对应相等的两个三角形相似;三边对应成比例的两个三角形相似.两边对应成比例,且夹角相等的两个三角形相似.图中的ABCABC,你还能用其它方法来说明其正确性吗?且A=A=450,ABCABC(两边对应成比例且夹角相等的两个三角形相似.)CBAA B C解法2:如图,设小正方形的边长为1,由勾股定理可得:.2CAACBAAB;22,8ACAB;2,4CABA我思,我进步;1,2
5、,EFAEAEF中在.22CEEFCEAE 例 如图矩形ABCD是由三个正方形ABEG,GEFH,HFCD组成的.图中的AEFCEA,你还能用其它方法说明其正确性吗?解法2:AEFCEA.理由是:设小正方形的边长是1,由勾股定理得;2,2,AECECEA中在AEFCEA.(两边对应边成比例且夹角相等的两个三角形相似.)且AEF=CEA(公共角),ABCDEFGH亲历知识的发生和发展 问题四:在Rt ABC与Rt ABC中,C=C=900,如果有一直角边和斜边对应成比例,那么它们一定相似吗?我们一起来动手:画 ABC与 ABC,使 设法比较B 与B的大小,A与A的大小.Rt ABC与Rt ABC
6、相似吗?说说你的理由.改变k值的大小(如1 3),再试一试.通过上面的活动,你猜出了什么结论?).23(如给定的值都等于和kBAABCAAC判定直角三角形相似的方法 斜边直角边对应成比例的两个直角三角形相似.如图,在RtABC与RtABC中,如果那么ABCABC,(斜边直角边对应成比例的两个直角三角形相似.)CBAABC.CAACBAABw这是一个用来判定两个直角三角形相似的方法,务必引起重视.亲历知识的发生和发展 我们重新来看问题三:如果 ABC与 DEF有一个角相等,且两边对应成比例,那么它们一定相似吗?(2).如果这个角是这两边中一条边的对角,那么它们一定相似吗?小明和小颖分别画出了下面
7、的 ABC与 DEF:ABC5003.2cm4cm2cmDFE5001.6cm 通过上面的活动,你猜出了什么结论?两边对应成比例,且其中一边的对角对应相等的两个三角形不一定相似提升能力的奥秘w判定下列三角形是否相似,若不相似需要增加什么条件才能相似?w两个全等三角形;w两个等腰三角形;w两个等边三角形;w两个直角三角形;w含300角的直角三角形;w如图,P是AB上一点,补充下列条件:w(1)ACP=B;w(2)APC=ACB;w其中一定能使w ACP ABC的是()w(A)(1)(2)(3)(4)w(B)(1)(2)(3)w(C)(3)w(D)(1)(2)(4);3BCPCACAP.4ABAC
展开阅读全文