半导体雷射技术课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《半导体雷射技术课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 半导体 雷射 技术 课件
- 资源描述:
-
1、長波長垂直共振腔面射型雷射 半導體VCSEL 具有圓型的雷射光點、低發散角、低閾值電流、高調變速度與頻寬和方便的晶片上即時測試等優點,因此為理想的光纖通訊光源。而在長距離的光纖通訊系統中,其光纖材料一般使用石英光纖(silica fiber),這是由於石英光纖在長波長紅外光範圍時具有最低的色散(dispersion)與最小的光學損耗(loss),其所對應的波長分別是1.3 與1.55m,如圖4-14 所示。長距離的光纖通訊對於訊號在光纖中傳遞的損失必須列為重要的考量之一,由圖4-14(a)中可以觀察到,石英光纖內的光損耗主要是由紅外線吸收以及Rayleigh 散射這兩個機制所造成。當傳輸的光波
2、長為1.3 以及1.55m 時,會有一個較低的損耗窗口,特別是在傳輸波長為1.55m 時,其損耗將低至每公里0.2 dB。因此,在長波長光纖通訊傳輸光源波長的選擇上,1.3m 以及1.55m便是相當重要的光源。除了探討光在光纖傳遞中的損失外,保持訊號波形的完整性也是另一個必須考量的重要因素。圖4-14(b)為在石英光纖中,材料色散係數對波長的關係圖。從圖中可以知道在石英光纖內,不同波長的光在其中傳遞會有不同的色散程度,若色散程度過大的話,會容易造成傳輸訊號的波形變形,因而限制了傳輸的距離。圖4-14(b)顯示當傳輸波長在1.3m 附近時,其材料色散係數值為零。因此,雖然從前面光損耗的分析中我們
3、可以知道,傳輸波長為1.3m 的損失值比1.55m 來得大,但由於其色散程度最低,訊號的波形在經過長距離的傳遞後最容易保持其完整性,因此仍然被普遍用來當作中長程光纖通訊的傳輸波長。以GaAs 為材料系統的短波長VCSEL(0.780.98m)已經發展的相當成熟,並且已有許多商品化的產品出現。然而操作在長波長的VCSEL(1.31.55m),其發展相較於GaAs 為材料的VCSEL 緩慢許多,即使第一個VCSEL(1.3m)已在1979 年成功在低溫下實現,但是在低溫下操作的元件很難達到商品化。其中導致發展緩慢的重要因素即為長波長DBR 的製作困難以及在高溫下量子井主動區增益不足的現象,除此之外
4、,長波長DBR 材料無法利用自然氧化的方式製作光與電流的侷限,以及長波長材料系統的導熱較差等,都是讓長波長VCSEL 發展緩慢的重要因素。一般而言,長波長VCSEL 主要成長於InP 基板上,然而晶格匹配於InP 基板的InGaAsP 主動層材料系統卻因為嚴重的Auger 非輻射復合效應導致相當低的材料增益。此外,晶格匹配於InP 基板長波長DBR 材料系統。如InP/InGaAsP 與InAlAs/InGaAlAs 只能提供相對小的折射率差異,這也讓長波長的DBR 必須成長相當高的對數才能達到高反射率的需求,在這樣的DBR材料系統下除了大的穿透深度會導致光的吸收外,對於熱的逸散亦是一大問題。
5、因此,對於長波長VCSEL 而言如何製作高增益的主動區材料、高反射率的DBR 與設計高散熱性的元件結構都是發展長波長VCSEL 的問題與挑戰。現今主要應用於長波長VCSEL 的元件結構主要可以區分為下以三種:(1)使用介質材料作為上下DBR 的etched-well VCSEL 結構。(2)利用介質材料與半導體製作上下DBR,並配合環狀電極的VCSEL 結構。(3)利用磊晶的方式製作完成VCSEL 結構。圖4-15(a)使用介質材料作為上下DBR 的etched-well VCSEL 結構。圖4-15(b)利用介質材料與半導體製作上下DBR,並配合環狀電極的VCSEL 結構。圖4-15(c)利
6、用磊晶的方式製作完成VCSEL 結構。首先,利用晶片接合(wafer bonding)技術已可整合InP 系統的主動層結構於GaAs 材料系統的DBR 上,藉此達到高效率的長波長VCSEL。其次,1.3m 長波長新材料InGaNAs 可直接成長於GaAs 基板上亦有相當不錯的元件表現,但是要將波長推至1.55m 並不容易,可以利用五元化合物InGaNAsSb 達到更長的發光波長。為了配合現有長波長主動層材料InGaAsP 與InGaAlAs,利用磊晶方式成長晶格匹配於InP 基板的DBR 仍是研究的重點之一。此外,利用metamorphic 磊晶技術成長晶格匹配於InP 基板的GaAs/AlA
7、sDBR 亦被應用於長波長的VCSEL,然而由於晶體缺陷的因素,此種雷射元件特性仍有穩定性的問題。使用Sb 材料系統的DBR 可提供更大的折射率差異並且已被用在長波長VCSEL 中,然而此種DBR在熱傳導特性上並不佳,DBR 的成長條件更是極具複雜性。由於長波長VCSEL 面臨了低主動區增益、高熱阻與嚴重的Auger非輻射復合的光損耗,這使得主動層發光材料的選擇更加嚴苛。為了將發光波長操作在1.31.6m,其主動層材料對應的能隙值為0.95 與0.78 eV 之間。InGaAsP/InP 材料系統雖然最早被應用於長波長主動層材料,然而其導電帶的導電帶偏移(conduction band off
展开阅读全文