电力拖动自动控制系统第六章3课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《电力拖动自动控制系统第六章3课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电力 拖动 自动控制系统 第六 课件
- 资源描述:
-
1、第六章(第六章(3)主讲教师:解小华学时:主讲教师:解小华学时:64646-6 异步电动机的动态数学模型和坐标变换 本节提要本节提要问题的提出问题的提出异步电动机动态数学模型的性质异步电动机动态数学模型的性质三相异步电动机的多变量非线性数学模型三相异步电动机的多变量非线性数学模型坐标变换和变换矩阵坐标变换和变换矩阵三相异步电动机在两相坐标系上的数学模型三相异步电动机在两相坐标系上的数学模型三相异步电动机在两相坐标系上的状态方程三相异步电动机在两相坐标系上的状态方程问题的提出问题的提出 前节论述的基于稳态数学模型的异步电前节论述的基于稳态数学模型的异步电机调速系统虽然能够在一定范围内实现平机调速
2、系统虽然能够在一定范围内实现平滑调速,但是,如果遇到轧钢机、数控机滑调速,但是,如果遇到轧钢机、数控机床、机器人、载客电梯等需要高动态性能床、机器人、载客电梯等需要高动态性能的调速系统或伺服系统,就不能完全适应的调速系统或伺服系统,就不能完全适应了。要实现高动态性能的系统,必须首先了。要实现高动态性能的系统,必须首先认真研究异步电机的动态数学模型。认真研究异步电机的动态数学模型。6-6 异步电动机的动态数学模型和坐标变换一、异步电动机动态数学模型的性质一、异步电动机动态数学模型的性质1.1.直流电机数学模型的性质直流电机数学模型的性质 直流电机的磁通由励磁绕组产生,可以在直流电机的磁通由励磁绕
3、组产生,可以在电枢合上电源以前建立起来而不参与系统的电枢合上电源以前建立起来而不参与系统的动态过程(弱磁调速时除外),因此它的动动态过程(弱磁调速时除外),因此它的动态数学模型只是一个单输入和单输出系统态数学模型只是一个单输入和单输出系统。直流电机直流电机模型模型Udn 6-6 异步电动机的动态数学模型和坐标变换l 直流电机模型变量和参数直流电机模型变量和参数 输入变量输入变量电枢电压电枢电压 Ud;输出变量输出变量转速转速 n;控制对象参数:控制对象参数:p机电时间常数机电时间常数 Tm;p电枢回路电磁时间常数电枢回路电磁时间常数 Tl;p电力电子装置的滞后时间常数电力电子装置的滞后时间常数
4、 Ts。6-6 异步电动机的动态数学模型和坐标变换l 控制理论和方法控制理论和方法 在工程上能够允许的一些假定条件下,可在工程上能够允许的一些假定条件下,可以描述成单变量(单输入单输出)的三阶以描述成单变量(单输入单输出)的三阶线性系统,完全可以应用经典的线性控制线性系统,完全可以应用经典的线性控制理论和由它发展出来的工程设计方法进行理论和由它发展出来的工程设计方法进行分析与设计。分析与设计。但是,同样的理论和方法用来分析与设但是,同样的理论和方法用来分析与设计交流调速系统时,就不那么方便了,因计交流调速系统时,就不那么方便了,因为交流电机的数学模型和直流电机模型相为交流电机的数学模型和直流电
5、机模型相比有着本质上的区别。比有着本质上的区别。6-6 异步电动机的动态数学模型和坐标变换 2.2.交流电机数学模型的性质交流电机数学模型的性质 (1 1)异步电机变压变频调速时需要进行电)异步电机变压变频调速时需要进行电压(或电流)和频率的协调控制,有电压压(或电流)和频率的协调控制,有电压(电流)和频率两种独立的输入变量。在(电流)和频率两种独立的输入变量。在输出变量中,除转速外,磁通也得算一个输出变量中,除转速外,磁通也得算一个独立的输出变量。因为电机只有一个三相独立的输出变量。因为电机只有一个三相输入电源,磁通的建立和转速的变化是同输入电源,磁通的建立和转速的变化是同时进行的,为了获得
6、良好的动态性能,也时进行的,为了获得良好的动态性能,也希望对磁通施加某种控制,使它在动态过希望对磁通施加某种控制,使它在动态过程中尽量保持恒定,才能产生较大的动态程中尽量保持恒定,才能产生较大的动态转矩。转矩。6-6 异步电动机的动态数学模型和坐标变换l多变量、强耦合的模型结构多变量、强耦合的模型结构 由于这些原因,由于这些原因,异步电机是一个异步电机是一个多多变量变量(多输入多输(多输入多输出)系统,而电压出)系统,而电压(电流)、频率、(电流)、频率、磁通、转速之间又磁通、转速之间又互相都有影响,所互相都有影响,所以是以是强耦合强耦合的多变的多变量系统,可以先用量系统,可以先用右图来定性地
7、表示右图来定性地表示。A1A2Us1(Is)图6-43 异步电机的多变量、强耦合模型结构 6-6 异步电动机的动态数学模型和坐标变换l 模型的非线性模型的非线性 (2 2)在异步电机中,电流乘磁通产生转)在异步电机中,电流乘磁通产生转矩,转速乘磁通得到感应电动势,由于矩,转速乘磁通得到感应电动势,由于它们都是同时变化的,在数学模型中就它们都是同时变化的,在数学模型中就含有两个变量的乘积项。这样一来,即含有两个变量的乘积项。这样一来,即使不考虑磁饱和等因素,数学模型也是使不考虑磁饱和等因素,数学模型也是非线性的。非线性的。6-6 异步电动机的动态数学模型和坐标变换l 模型的高阶性模型的高阶性 (
8、3 3)三相异步电机定子有三个绕组,转子)三相异步电机定子有三个绕组,转子也可等效为三个绕组,每个绕组产生磁通也可等效为三个绕组,每个绕组产生磁通时都有自己的电磁惯性,再算上运动系统时都有自己的电磁惯性,再算上运动系统的机电惯性,和转速与转角的积分关系,的机电惯性,和转速与转角的积分关系,即使不考虑变频装置的滞后因素,也是一即使不考虑变频装置的滞后因素,也是一个八阶系统。个八阶系统。6-6 异步电动机的动态数学模型和坐标变换6-6 异步电动机的动态数学模型和坐标变换 总起来说,异步电机的动态数学总起来说,异步电机的动态数学模型是一个模型是一个高阶、非线性、强耦合高阶、非线性、强耦合的多变量系统
9、的多变量系统。二、三相异步电动机的多变量非线性数学模型二、三相异步电动机的多变量非线性数学模型 假设条件假设条件:(1 1)忽略空间谐波,设三相绕组对称,在)忽略空间谐波,设三相绕组对称,在空间互差空间互差120电角度,所产生的磁动势电角度,所产生的磁动势沿气隙周围按正弦规律分布;沿气隙周围按正弦规律分布;(2 2)忽略磁路饱和,各绕组的自感和互感)忽略磁路饱和,各绕组的自感和互感都是恒定的;都是恒定的;(3 3)忽略铁心损耗;)忽略铁心损耗;(4 4)不考虑频率变化和温度变化对绕组电)不考虑频率变化和温度变化对绕组电阻的影响。阻的影响。6-6 异步电动机的动态数学模型和坐标变换6-6 异步电
10、动机的动态数学模型和坐标变换 物理模型物理模型 无论电机转子是绕线型还是笼型的,无论电机转子是绕线型还是笼型的,都将它等效成三相绕线转子,并折算到都将它等效成三相绕线转子,并折算到定子侧,折算后的定子和转子绕组匝数定子侧,折算后的定子和转子绕组匝数都相等。这样,实际电机绕组就等效成都相等。这样,实际电机绕组就等效成下图所示的三相异步电机的物理模型。下图所示的三相异步电机的物理模型。三相异步电动机的物理模型三相异步电动机的物理模型ABCuAuBuC1uaubucabc图6-44 三相异步电动机的物理模型 6-6 异步电动机的动态数学模型和坐标变换6-6 异步电动机的动态数学模型和坐标变换 图中,
11、定子三相绕组轴线图中,定子三相绕组轴线 A、B、C 在在空间是固定的,以空间是固定的,以 A A 轴为参考坐标轴;转轴为参考坐标轴;转子绕组轴线子绕组轴线 a、b、c 随转子旋转,转子随转子旋转,转子 a 轴和定子轴和定子A 轴间的电角度轴间的电角度 为空间角位移为空间角位移变量。变量。规定各绕组电压、电流、磁链的正方向规定各绕组电压、电流、磁链的正方向符合电动机惯例和右手螺旋定则。这时,符合电动机惯例和右手螺旋定则。这时,异步电机的数学模型由下述电压方程、磁异步电机的数学模型由下述电压方程、磁链方程、转矩方程和运动方程组成。链方程、转矩方程和运动方程组成。1.1.电压方程电压方程三相定子绕组
12、的电压平衡方程为三相定子绕组的电压平衡方程为 tRiuddAsAAtRiuddBsBBtRiuddCsCC 6-6 异步电动机的动态数学模型和坐标变换电压方程(续)电压方程(续)与此相应,三相转子绕组折算到定子侧后与此相应,三相转子绕组折算到定子侧后的电压方程为的电压方程为 tRiuddaraatRiuddbrbbtRiuddcrcc 6-6 异步电动机的动态数学模型和坐标变换6-6 异步电动机的动态数学模型和坐标变换 上述各量都已折算到定子侧,为了简单起见,上述各量都已折算到定子侧,为了简单起见,表示折算的上角标表示折算的上角标“”“”均省略,以下同此。均省略,以下同此。式中式中Rs,Rr定
13、子和转子绕组电阻。定子和转子绕组电阻。A,B,C,a,b,c 各相绕组的全磁链;各相绕组的全磁链;iA,iB,iC,ia,ib,ic 定子和转子相电流的瞬时值;定子和转子相电流的瞬时值;uA,uB,uC,ua,ub,uc 定子和转子相电压的瞬时值;定子和转子相电压的瞬时值;电压方程的矩阵形式电压方程的矩阵形式 将电压方程写成矩阵形式,并以微分算子将电压方程写成矩阵形式,并以微分算子 p 代代替微分符号替微分符号 d/dtcbaCBAcbaCBArrrssscbaCBA000000000000000000000000000000piiiiiiRRRRRRuuuuuu(6-67a)或写成或写成 R
14、iup(6-67b)6-6 异步电动机的动态数学模型和坐标变换 2.2.磁链方程磁链方程 每个绕组的磁链是它本身的自感磁链和其它绕组每个绕组的磁链是它本身的自感磁链和其它绕组对它的互感磁链之和,因此,六个绕组的磁链可表对它的互感磁链之和,因此,六个绕组的磁链可表达为达为 cbaCBAcCcbcacCcBcAbcbbbabCbBbAacabaaaCaBaACcCbCaCCCBCABcBbBaBCBBBAAcAbAaACABAAcbaCBAiiiiiiLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL(6-68a)或写成或写成 Li(6-68b)6-6 异步电动机的动态数学模
15、型和坐标变换l 电感矩阵电感矩阵式中,式中,L 是是6 66 6电感矩阵,其中对角线元素电感矩阵,其中对角线元素 LAA,LBB,LCC,Laa,Lbb,Lcc 是各有关绕是各有关绕组的自感,其余各项则是绕组间的互感。组的自感,其余各项则是绕组间的互感。实际上,与电机绕组交链的磁通主要只有实际上,与电机绕组交链的磁通主要只有两类:一类是穿过气隙的相间互感磁通,另两类:一类是穿过气隙的相间互感磁通,另一类是只与一相绕组交链而不穿过气隙的漏一类是只与一相绕组交链而不穿过气隙的漏磁通,前者是主要的。磁通,前者是主要的。6-6 异步电动机的动态数学模型和坐标变换l 电感的种类和计算电感的种类和计算 定
16、子漏感定子漏感 Lls 定子各相漏磁通所对应的电感定子各相漏磁通所对应的电感,由于绕组的对称性,各相漏感值均相等;,由于绕组的对称性,各相漏感值均相等;转子漏感转子漏感 Llr 转子各相漏磁通所对应的电感。转子各相漏磁通所对应的电感。定子互感定子互感 Lms与定子一相绕组交链的最大互与定子一相绕组交链的最大互感磁通;感磁通;转子互感转子互感 Lmr与转子一相绕组交链的最大互感与转子一相绕组交链的最大互感磁通。磁通。6-6 异步电动机的动态数学模型和坐标变换 6-6 异步电动机的动态数学模型和坐标变换 由于折算后定、转子绕组匝数相等,由于折算后定、转子绕组匝数相等,且各绕组间互感磁通都通过气隙,
17、磁阻且各绕组间互感磁通都通过气隙,磁阻相同,故可认为相同,故可认为 Lms=Lmr 自感表达式自感表达式 对于每一相绕组来说,它所交链的磁通对于每一相绕组来说,它所交链的磁通是互感磁通与漏感磁通之和,因此,定是互感磁通与漏感磁通之和,因此,定子各相自感为子各相自感为smsCCBBAAlLLLLL 6-6 异步电动机的动态数学模型和坐标变换(6-69)转子各相自感为转子各相自感为 rmsccbbaalLLLLL(6-70)互感表达式互感表达式 两相绕组之间只有互感。互感又分为两类:两相绕组之间只有互感。互感又分为两类:(1 1)定子三相彼此之间和转子三相彼此)定子三相彼此之间和转子三相彼此之间位
18、置都是固定的,故互感为常值;之间位置都是固定的,故互感为常值;(2 2)定子任一相与转子任一相之间的位)定子任一相与转子任一相之间的位置是变化的,互感是角位移置是变化的,互感是角位移 的函数。的函数。6-6 异步电动机的动态数学模型和坐标变换p 第一类固定位置绕组的互感第一类固定位置绕组的互感 三相绕组轴线彼此在空间的相位差是三相绕组轴线彼此在空间的相位差是120,在假定气隙磁通为正弦分布的条,在假定气隙磁通为正弦分布的条件下,互感值应为,件下,互感值应为,于是于是 msmsms21)120cos(120cosLLLmsACCBBACABCAB21LLLLLLL(6-71)msaccbbaca
19、bcab21LLLLLLL(6-72)6-6 异步电动机的动态数学模型和坐标变换p 第二类变化位置绕组的互感第二类变化位置绕组的互感 定、转子绕组间的互感,由于相互间位置的变定、转子绕组间的互感,由于相互间位置的变化(化(见图见图6-446-44),可分别表示为),可分别表示为 cosmscCCcbBBbaAAaLLLLLLL)120cos(msaCCacBBcbAAbLLLLLLL)120cos(msbCCbaBBacAAcLLLLLLL 当定、转子两相绕组轴线一致时,两者之间当定、转子两相绕组轴线一致时,两者之间的互感值最大,就是每相最大互感的互感值最大,就是每相最大互感 Lms。(6-7
20、3)(6-74)(6-75)6-6 异步电动机的动态数学模型和坐标变换 三相异步电动机的物理模型三相异步电动机的物理模型ABCuAuBuC1uaubucabc图6-44 三相异步电动机的物理模型 6-6 异步电动机的动态数学模型和坐标变换转子 a 轴和定子A 轴间的电角度 为空间角位移变量l 磁链方程磁链方程 将式(将式(6-696-69)式(式(6-756-75)都代入式()都代入式(6-68a6-68a),即),即得完整的磁链方程,显然这个矩阵方程是比较复杂得完整的磁链方程,显然这个矩阵方程是比较复杂的,为了方便起见,可以将它写成分块矩阵的形式的,为了方便起见,可以将它写成分块矩阵的形式
21、rsrrrssrssrsiiLLLL(6-76)TCBAsTcbarTiiiCBAsiTiiicbari式中式中 6-6 异步电动机的动态数学模型和坐标变换 6-6 异步电动机的动态数学模型和坐标变换smsmsmsmssmsmsmssms212121212121llmslLLLLLLLLLLLLssL(6-77)rmsmsmsmsrmsmsmsmsrms212121212121lllLLLLLLLLLLLLrrL(6-78)值得注意的是值得注意的是,和和 两个分块矩阵互为两个分块矩阵互为转置,且均与转子位置转置,且均与转子位置 有关,它们的元有关,它们的元素都是变参数,这是素都是变参数,这是
22、系统非线性的一个根系统非线性的一个根源源。为了把变参数转换成常参数须利用坐标。为了把变参数转换成常参数须利用坐标变换,后面将详细讨论这个问题。变换,后面将详细讨论这个问题。6-6 异步电动机的动态数学模型和坐标变换cos)120cos()120cos()120cos(cos)120cos()120cos()120cos(cosmsLTsrrsLL(6-79)rsLsrLl 电压方程的展开形式电压方程的展开形式 如果把磁链方程(如果把磁链方程(6-68b6-68b)代入电压方程()代入电压方程(6-67b6-67b)中,即得展开后的电压方程中,即得展开后的电压方程 iLiLRiiLiLRiLiR
23、iudddddddd)(tttp(6-80)式中,式中,Ldi/dt 项属于电磁感应电动势中的脉变项属于电磁感应电动势中的脉变电动势(或称变压器电动势),电动势(或称变压器电动势),(dL/d)i 项属于项属于电磁感应电动势中与转速成正比的旋转电动势。电磁感应电动势中与转速成正比的旋转电动势。6-6 异步电动机的动态数学模型和坐标变换3.3.转矩方程转矩方程 根据机电能量转换原理,在多绕组电机根据机电能量转换原理,在多绕组电机中,在线性电感的条件下,磁场的储能和中,在线性电感的条件下,磁场的储能和磁共能为磁共能为 LiiiTTWW2121mm(6-81)6-6 异步电动机的动态数学模型和坐标变
24、换6-6 异步电动机的动态数学模型和坐标变换.constmp.constmmeiiWnWT(6-82)而电磁转矩等于机械角位移变化时磁共能而电磁转矩等于机械角位移变化时磁共能的变化率的变化率 (电流约束为常值),且机械(电流约束为常值),且机械角位移角位移 m=/np,于是,于是 mmW 转矩方程的矩阵形式转矩方程的矩阵形式 将式(将式(6-816-81)代入式()代入式(6-826-82),并考虑到电感的),并考虑到电感的分块矩阵关系式(分块矩阵关系式(6-776-77)(6-796-79),得),得iLLiiLi002121rssrppeTTnnT(6-83)6-6 异步电动机的动态数学模
25、型和坐标变换又由于又由于 代入式(代入式(6-836-83)得)得 6-6 异步电动机的动态数学模型和坐标变换rsrssrsrpe21iLiiLiTTnT(6-84)cbaCBArsiiiiiiTTTiii 转矩方程的三相坐标系形式转矩方程的三相坐标系形式 以式(以式(6-796-79)代入式()代入式(6-846-84)并展开后,)并展开后,舍去负号,意即电磁转矩的正方向为使舍去负号,意即电磁转矩的正方向为使 减减小的方向,则小的方向,则 )120sin()()120sin()(sin)(bCaBcAaCcBbAcCbBaAmspeiiiiiiiiiiiiiiiiiiLnT(6-85)6-6
展开阅读全文