2019年高考数学一轮复习高考大题增分专项6高考中的概率统计与统计案例课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2019年高考数学一轮复习高考大题增分专项6高考中的概率统计与统计案例课件.ppt》由用户(flying)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年高 数学 一轮 复习 高考 大题增分 专项 中的 概率 统计 案例 课件 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、高考大题增分专项六高考中的概率、统计与统计案例,-2-,从近五年的高考试题来看,在高考的解答题中,对概率、统计与统计案例的考查主要有三个方面:一是统计与统计案例,以实际生活中的事例为背景,通过对相关数据的统计分析、抽象概括,作出估计、判断,其中回归分析、独立性检验、用样本的数据特征估计总体的数据特征是考查重点,常与抽样方法、茎叶图、频率分布直方图、概率等知识交汇考查;二是统计与概率综合,以现实生活为背景,利用频率估计概率,常与抽样方法、茎叶图、频率分布直方图、概率等知识交汇考查;三是古典概型的综合应用,以现实生活为背景,求某些事件发生的概率,常与抽样方法、茎叶图等统计知识交汇考查.,-3-,题
2、型一,题型二,题型三,题型四,题型五,已知样本的频率分布表或样本的频率分布直方图,求样本的中位数、平均数、方差、标准差等数字特征.由于每个样本的具体值不知道,只知道各区间上的端点值,这时取区间两端数据的平均值作为样本的具体值,求样本的数字特征.,-4-,题型一,题型二,题型三,题型四,题型五,例1我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照0,0.5),0.5,1),4,4.5分成9组,制成了如图所示的频率分布直方图.,-5-,题型一,题型二,题型三,题型四,题型五,(1)求直方图中a
3、的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数.解(1)由频率分布直方图,可知月均用水量在0,0.5)的频率为0.080.5=0.04.同理,在0.5,1),1.5,2),2,2.5),3,3.5),3.5,4),4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5a+0.5a,解得a=0.30.,-6-,题型一,题型二,题型三,题型四,题型五,(2)由(1),100位居民月均用水量不低于3吨的频率为0.
4、06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 0000.12=36 000.(3)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.730.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.480.5,所以2x2.5.由0.50(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.,-7-,题型一,题型二,题型三,题型四,题型五,对点训练1从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布
5、表:,-8-,题型一,题型二,题型三,题型四,题型五,(1)作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?,-9-,题型一,题型二,题型三,题型四,题型五,解 (1),-10-,题型一,题型二,题型三,题型四,题型五,(2)质量指标值的样本平均数为 =800.06+900.26+1000.38+1100.22+1200.08=100.质量指标值的样本方差为s2=(-20)20.06+(-10)20.26+0
6、0.38+1020.22+2020.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.,-11-,题型一,题型二,题型三,题型四,题型五,-12-,题型一,题型二,题型三,题型四,题型五,例2某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费xi和年销售量yi(
7、i=1,2,8)数据作了初步处理,得到下面的散点图及一些统计量的值.,-13-,题型一,题型二,题型三,题型四,题型五,(1)根据散点图判断,y=a+bx与y=c+d 哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;(3)已知这种产品的年利润z与x,y的关系为z=0.2y-x.根据(2)的结果回答下列问题:当年宣传费x=49时,年销售量及年利润的预报值是多少?当年宣传费x为何值时,年利润的预报值最大?,-14-,题型一,题型二,题型三,题型四,题型五,-15-,题型一,题型二,题型三,题型四,题型
展开阅读全文