桥头及桥梁伸缩缝处跳车原因及防治措施.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《桥头及桥梁伸缩缝处跳车原因及防治措施.docx》由用户(宝宝乐园)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 桥头 桥梁 伸缩缝 处跳车 原因 防治 措施
- 资源描述:
-
1、桥头及桥梁伸缩缝处跳车原因及防治措施一、产生原因1、桥头跳车桥头跳车台阶的产生和形成是多方面的,包括地基地面条件、填料、施工材料以及设计、施工方面的诸多原因。(1)桥台及台后填方地基的受力与沉降变形分析我国地域辽阔,作为桥台及台后填方地基的地层岩性状况也千差万别,如基岩(岩浆岩、沉积岩、变质岩)地基、黄土地基、软土地基、冻土地基、盐渍土地基、膨胀土地基等等,除基岩(指次坚石以上的岩类)地基外,其它类型的地基一般情况在桥台及台后填方的作用下,均要发生不同程度的沉降或竖向固结变形,所以对地基必须进行加固处理设计,如采用扩大基础或桩基础等,以保证地基的稳定性。桥台及台后填方的地基一般情况为同一性质或
2、同一类型的地层,但从目前设计情况看,仅对桥台地基进行加固处理设计,而对台后填方路段下的地基一般不进行加固处理设计。桥台和台后填方是两个性质不同的结构体,虽然桥台作用在地基上的压力大于台后填方,但由于桥台基础一般都进行了加固处理,所以它一般不发生竖向沉降变形。而台后填方的地基一般不进行加固,其竖向沉降变形都远大于桥台下的地基变形,由于地基的这种差异变形,反映到上部路面,就出现了桥台和台后填方段的差异沉降变形。(2)台后填料受渗水侵蚀及变形分析桥台一般由浆砌片石和钢筋混凝土砌筑,在桥台和台后填方之间或者锥坡部位,大气降水易沿路面或锥坡体(锥坡体的压实度较难达到要求)下渗,下渗水对桥台一般不产生破坏
3、作用,但是对土类填料,易产生侵蚀和软化,特别对于填方体压实度不够,更易产生侵蚀和软化,降低强度,从而导致填方体变形。对砂砾石类填料,从填方横断面看一般填方体中部为砂砾石,两侧为土类,这种结构只利水的下渗,而不利水的横向排泄。对不加固的地基来讲,填方体中部压力大,向两侧边坡压力逐渐减小,从而使地基产生凹形沉降变形,当水沿砂砾石下渗到地基后,下渗水不易快速排泄,从而软化地基,并加速地基的变形。(3)台后填料压实分析靠近桥台处填方体的压实度很难达到设计规范要求,这也是一直困绕设计和施工的难点。目前在设计上和施工中主要采用强夯、人工夯实、填筑砂料等方法和措施。对于轻型桥台,重型压路机靠近桥台进行压实,
4、特别是振动压路机可能破坏桥台的结构;而对于“U”型桥台,重型压路机难以靠近,从而使靠近桥台部位的填方土体不易达到设计和压实度要求,造成桥台与台后填方差异沉降变形。(4)桥头跳车台阶产生的主要原因通过以上分析,可得出产生桥头跳车台阶的主要原因有:地基强度不同。桥涵、通道与路基大都是同年平行进行施工的,桥涵是刚性体,其地基强度一般都有较高的要求,并进行加固处理,沉降较小或不沉降(岩石地基)。而台后填方段地基未进行加固处理,从而使桥台和台后填方产生差异沉降变形,以致形成台阶。设计不周。设计人员有时对施工过程如何便于碾压考虑不周,对于填料的要求不严格,台背排水考虑欠佳。桥涵结构物两端的路堤,由于过水、
5、跨线或通道的要求,一般填土都较高,低的% 左右,高的可达&% 或更高,除了过水的桥涵两侧路堤往往受水浸淹,地基条件也较差,设计上对路基断面结构和边坡防护上有所考虑外,其他多数情况对高路堤设计上并无特别的要求,如压实度等指标均与一般路堤无异。但由于路堤较高,在填筑以后受到自重和行车荷载的作用,路堤填土必然要产生竖向变形值。台后填料不当。施工时对桥台台后的回填土未能慎重考虑,施工人员用料不当、控制不严,未能达到设计要求。但需特别指出,施工不良比材料不良更易造成构造物台后填料的下沉。台后压实不足。施工时工期工序安排不当,以致桥头填土处于工期末期,被迫赶工,不能很好地控制台背填土的压实度,致使填料压实
6、度不满足设计和规范要求,使填方体产生竖向固结变形,形成较大的工后沉降,在台背与路基连接部造成沉陷形成台阶。地基浸水软化。软土地基、湿陷性黄土地基浸水等造成路基沉降。桥台伸缩缝的破损。据上分析,形成桥头台阶的原因是多方面的,结构的差异、设计的不周和施工控制的不严、综合因素的作用导致了差异沉降的发生和发展。2、桥梁伸缩缝处跳车桥梁伸缩缝处跳车台阶产生的主要原因是桥梁伸缩缝发生病害或损坏引起的。(1)桥梁伸缩缝的作用众所周知,在气温变化的影响下,桥梁梁体长度会发生变化,从而使梁端发生位移,为适应这种位移并保持行车平顺,就必须设置桥梁伸缩装置。由此可见,桥梁伸缩缝的作用,在于调节由车辆荷载环境特征和桥
7、梁建筑材料的物理性能所引起的上部结构之间的位移和上部结构之间的联结。桥梁伸缩缝装置是桥梁构造的一部分,如果设计不当安装质量低劣、缺乏科学的和及时的养护,大部分桥梁会在桥梁伸缩缝处形成台阶,直接影响到桥梁的服务质量。(2)桥梁伸缩缝的使用与发展在橡胶伸缩缝出现以前,小位移桥梁一般采用锌铁皮伸缩缝,这种结构的装置在伸缩过程中会形成沟槽,使桥面失去平整,使用寿命缩短。大中位移的桥梁一般采用齿口钢板伸缩缝,车辆通过时受冲击振动大,缝体容易损坏,且不能防水,效果差。60 年代末期我国开始研制和试用橡胶伸缩缝产品,产品有空心板型和W 型,这种伸缩缝只能适应梁端位移量为20-60的中小跨径桥梁,且容易发生胶
8、条弹出现象而导致损坏。80年代中末期我国开始生产使用板式橡胶伸缩装置,这种装置由氯丁橡胶和加劲钢板组合而成,是一种刚柔相结合的装置。其接缝平整,吸震性好,适应面加大,基本上能满足中小跨径桥梁的需要。90年代,在板式橡胶伸缩装置的基础上生产了BF伸缩装置,其实质是橡胶板和钢梳齿组合成的伸缩装置,与板式橡胶缝装置相比合理性有所提高。90年代初,我国开始引进毛勒型钢伸缩缝装置,并进一步加以开发研究。到90年代中末期,开始大量生产和使用,此装置适用于所有大中桥梁的伸缩缝。毛勒型钢伸缩缝装置近几年来得到大范围推广使用,由于其结构形式和锚固形式大大改进,其合理性大大增强,普遍反映比其他类型装置先进、可靠。
9、但发生病害损坏的现象却也不少。针对位移量小的中小跨径桥梁,近几年又引进了-.- 弹性性与碎石填充型伸缩装置,虽大量推广,但仍存在一些问题。(3)桥梁伸缩装置损坏原因分析目前,工程上常常采用的伸缩装置有板式橡胶缝、BF缝、毛勒型钢缝以及TST弹性体伸缩装置。板式橡胶伸缩装置及BF缝装置是使用最多、最广泛的伸缩装置,但损坏也比较严重,这种损坏首先表现在过渡段的混凝土破坏,继而锚固系统破坏,最后整个伸缩装置破坏而无法使用。对目前常用桥梁结构而言,伸缩装置的锚固系统很难准确地预埋在梁中,甚至不能预埋,大部分锚固在铺装层混凝土中。一般的桥梁铺装厚度为8-12cm,最厚也不超过15cm。板式橡胶伸缩装置和
10、BF缝装置锚固系统由于缝本身厚度的影响,锚固深度一般只有5-7cm,最多不过10cm。伸缩装置一般设计要求过渡段混凝土采用C40、C50甚至更高的高标号混凝土,由于混凝土厚度太薄、体积太小,还加上预埋件的位置干扰,施工难度大,过渡段混凝土的锚固作用实际上大打折扣,预埋件的锚固质量也大受影响。桥面通常采用沥青混凝土料铺装,往往伸缩装置安装在先,桥面铺装在后,沥青面层和过渡段混凝土之间很难铺平,加上刚柔相接,容易产生台阶。车辆通行振动产生冲击使伸缩装置锚固系统和过渡段混凝土受力瞬时加大,而由此产生的振动又是高频振动,在反复的车辆瞬时荷载作用下,伸缩装置锚固混凝土不能保持弹性而破坏,锚固装置在反复动
11、载震动下产生变形并与混凝土剥离,最终全部破坏。桥梁的设计施工质量也是影响伸缩装置的使用寿命的一个主要原因。从设计上看:设计工程师在伸缩缝设计过程中只注重计算桥梁的伸缩量,并以此进行选型,而往往对伸缩装置的性能了解不全面,忽视了产品的相应技术要求。从施工上看:伸缩装置安装是桥梁施工的最后几道工序之一,为了赶竣工通车,施工人员对这道细活难活易疏忽大意,施工马虎,不按安装程序及有关操作要求施工。另外,伸缩装置安装后混凝土没有达到强度就提前开放交通,致使过渡段的锚固混凝土产生早期损伤,从而导致伸缩缝营运环境下降。另外,伸缩装置的受力复杂,而与之密切相关起决定作用的锚固系统却不尽合理,锚固混凝土太薄,强
12、度很难达到设计要求,极容易损坏。(4)桥梁伸缩装置破损的原因桥梁伸缩装置由于设置在梁端构造薄弱的部位,直接承受车辆荷载的反复作用,又多暴露于大自然中,受到各种自然因素的影响,因此,伸缩装置是易损坏、难修补的部位。伸缩装置产生破损的原因是多方面的,主要有:设计不周。设计时梁端部未能慎重考虑,在反复荷载作用下,梁端破损引起伸缩装置失灵。另外,有时变形量计算不恰当,采用了过大的伸缩间距,导致伸缩装置破损。伸缩装置自身问题。伸缩装置本身构造刚度不足,锚固的构件强度不足,在营运过程中产生不同程度的破坏。伸缩装置的后浇压填材料选择不当。对伸缩装置的后浇压填材料没有认真对待、精心选择,致使伸缩装置营运质量下
13、降,产生不同程度的病害。施工不当。施工过程中,梁端伸缩缝间距没有按设计要求完成,人为地放大和缩小,定位角钢位置不正确,致使伸缩装置不能正常工作。这样会出现下列情况:由于缝距太小,橡胶伸缩缝因超限挤压凸起而产生跳车;由于缝距过大,荷载作用下的剪切力以及车辆行驶的惯性,会将松动的伸缩缝橡胶带出定位角钢,产生了另一类型的跳车。施工时伸缩装置的锚固钢筋焊接的不够牢固,或产生遗漏预埋锚固钢筋的现象,给伸缩缝本身造成隐患;施工时伸缩装置安装的不好,桥面铺装后伸缩缝浇筑的不好,使用过程中,在反复荷载作用下致使伸缩缝损坏。连续缝设置不够完善。为了减少伸缩缝,现在大量采用连续梁或连续桥面。桥面连续就需设置连续缝
展开阅读全文