20春九数下(湘教版)第1章小结与复习 精品教学课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《20春九数下(湘教版)第1章小结与复习 精品教学课件.ppt》由用户(田田田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 20春九数下湘教版第1章小结与复习 精品教学课件 20 春九数下 湘教版 小结 复习 精品 教学 课件 下载 _九年级下册_湘教版(2024)_数学_初中
- 资源描述:
-
1、,第1章 二次函数,学练优九年级数学下(XJ) 教学课件,小结与复习,要点梳理,考点讲练,课堂小结,课后作业,要点梳理,一般地,形如 (a,b,c是常数, _)的函数,叫做二次函数,yax2bxc,a ,注意 (1)等号右边必须是整式;(2)自变量的最高次数是2;(3)当b0,c0时,yax2是特殊的二次函数,1.二次函数的概念,2.二次函数的图象与性质:,a0 开口向上,a 0 开口向下,x=h,(h , k),y最小=k,y最大=k,在对称轴左边,x y;在对称轴右边, x y,在对称轴左边,x y;在对称轴右边, x y,y最小=,y最大=,3.二次函数图象的平移,yax2,左、右平移
2、左加右减,上、下平移 上加下减,y-ax2,写成一般形式,沿x轴翻折,4.二次函数表达式的求法,1一般式法:yax2bxc (a 0),2顶点法:ya(xh)2k(a0),3交点法:ya(xx1)(xx2)(a0),5.二次函数与一元二次方程的关系,二次函数yax2bxc的图象和x轴交点有三种情况:有两个交点,有两个重合的交点,没有交点.当二次函数yax2bxc的图象和x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2bxc=0的根.,有两个交点,有两个相异的实数根,b2-4ac 0,有两个重合的交点,有两个相等的实数根,b2-4ac = 0,没有交点,没有实数根,b2
3、-4ac 0,6.二次函数的应用,1二次函数的应用包括以下两个方面 (1)用二次函数表示实际问题变量之间的关系,解决最大化问题(即最值问题); (2)利用二次函数的图像求一元二次方程的近似解,2一般步骤:(1)找出问题中的变量和常量以及它们之间的函数关系;(2)列出函数关系式,并确定自变量的取值范围;(3)利用二次函数的图象及性质解决实际问题;(4)检验结果的合理性,是否符合实际意义,例2 二次函数yx2bxc的图象如图所示,若点A(x1,y1),B(x2,y2)在此函数图象上,且x1y2,B,考点讲练,例1 抛物线yx22x3的顶点坐标为_,(1,2),例3 已知二次函数yax2bxc的图像
4、如图所示,下列结论:abc0;2ab0;4a2bc0;(ac)2b2. 其中正确的个数是( ) A1 B2 C3 D4,解析:由图象开口向下可得a0,由对称轴在y轴左侧可得b0,由图象与y轴交于正半轴可得c0,则abc0,故正确; 由对称轴x1可得2ab0,故正确; 由图象上横坐标为 x2的点在第三象限可得4a2bc0,故正确; 由图象上横坐标为1的点在第四象限得出abc0,由图象上横坐标为1的点在第二象限得出 abc0,则(abc)(abc)0, 即(ac)2b20,可得(ac)2b2, 故正确故选D.,1.可根据对称轴的位置确定b的符号:b0对称轴是y轴;a、b同号对称轴在y轴左侧;a、b
5、异号对称轴在y轴右侧.这个规律可简记为“左同右异”.,2.当x1时,函数yabc.当图象上x1的点在x轴上方时,abc0;当图象上x1的点在x轴上时,abc0;当图象上x1的点在x轴下方时,abc0.同理,可由图象上x1的点判断abc的符号.,例4 将抛物线yx26x5向上平移 2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是( ) Ay(x4)26 By(x4)22 Cy(x2)22 Dy(x1)23,B,例5 若函数y=x2-2x+b的图象与坐标轴有三个交点,则b的取值范围是( ) Ab1且b0 Bb1 C0b1 Db1,A,1.对于y2(x3)22的图象,下列叙述正确的是(
6、) A顶点坐标为(3,2) B对称轴为y3 C当x3时,y随x的增大而增大 D当x3时,y随x的增大而减小,C,2.下列函数中,当x0时,y值随x值增大而减小的是( ) A. y= B.y=x-1 C. D.y=-3x2,D,3.已知二次函数y=x22bxc,当x1时,y的值随x值的增大而减小,则实数b的取值范围是( ) Ab1 Bb1 Cb1 Db1,解析:二次项系数为10,抛物线开口向下,在对称轴右侧,y的值随x值的增大而减小,由题设可知,当x1时,y的值随x值的增大而减小,抛物线y=x22bxc的对称轴应在直线x=1的左侧而抛物线y=x22bxc的对称轴 ,即b1,故选择D .,D,4.
展开阅读全文