书签 分享 收藏 举报 版权申诉 / 30
上传文档赚钱

类型20春九数下(湘教版)第1章小结与复习 精品教学课件.ppt

  • 上传人(卖家):田田田
  • 文档编号:367694
  • 上传时间:2020-03-14
  • 格式:PPT
  • 页数:30
  • 大小:719KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《20春九数下(湘教版)第1章小结与复习 精品教学课件.ppt》由用户(田田田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    20春九数下湘教版第1章小结与复习 精品教学课件 20 春九数下 湘教版 小结 复习 精品 教学 课件 下载 _九年级下册_湘教版(2024)_数学_初中
    资源描述:

    1、,第1章 二次函数,学练优九年级数学下(XJ) 教学课件,小结与复习,要点梳理,考点讲练,课堂小结,课后作业,要点梳理,一般地,形如 (a,b,c是常数, _)的函数,叫做二次函数,yax2bxc,a ,注意 (1)等号右边必须是整式;(2)自变量的最高次数是2;(3)当b0,c0时,yax2是特殊的二次函数,1.二次函数的概念,2.二次函数的图象与性质:,a0 开口向上,a 0 开口向下,x=h,(h , k),y最小=k,y最大=k,在对称轴左边,x y;在对称轴右边, x y,在对称轴左边,x y;在对称轴右边, x y,y最小=,y最大=,3.二次函数图象的平移,yax2,左、右平移

    2、左加右减,上、下平移 上加下减,y-ax2,写成一般形式,沿x轴翻折,4.二次函数表达式的求法,1一般式法:yax2bxc (a 0),2顶点法:ya(xh)2k(a0),3交点法:ya(xx1)(xx2)(a0),5.二次函数与一元二次方程的关系,二次函数yax2bxc的图象和x轴交点有三种情况:有两个交点,有两个重合的交点,没有交点.当二次函数yax2bxc的图象和x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2bxc=0的根.,有两个交点,有两个相异的实数根,b2-4ac 0,有两个重合的交点,有两个相等的实数根,b2-4ac = 0,没有交点,没有实数根,b2

    3、-4ac 0,6.二次函数的应用,1二次函数的应用包括以下两个方面 (1)用二次函数表示实际问题变量之间的关系,解决最大化问题(即最值问题); (2)利用二次函数的图像求一元二次方程的近似解,2一般步骤:(1)找出问题中的变量和常量以及它们之间的函数关系;(2)列出函数关系式,并确定自变量的取值范围;(3)利用二次函数的图象及性质解决实际问题;(4)检验结果的合理性,是否符合实际意义,例2 二次函数yx2bxc的图象如图所示,若点A(x1,y1),B(x2,y2)在此函数图象上,且x1y2,B,考点讲练,例1 抛物线yx22x3的顶点坐标为_,(1,2),例3 已知二次函数yax2bxc的图像

    4、如图所示,下列结论:abc0;2ab0;4a2bc0;(ac)2b2. 其中正确的个数是( ) A1 B2 C3 D4,解析:由图象开口向下可得a0,由对称轴在y轴左侧可得b0,由图象与y轴交于正半轴可得c0,则abc0,故正确; 由对称轴x1可得2ab0,故正确; 由图象上横坐标为 x2的点在第三象限可得4a2bc0,故正确; 由图象上横坐标为1的点在第四象限得出abc0,由图象上横坐标为1的点在第二象限得出 abc0,则(abc)(abc)0, 即(ac)2b20,可得(ac)2b2, 故正确故选D.,1.可根据对称轴的位置确定b的符号:b0对称轴是y轴;a、b同号对称轴在y轴左侧;a、b

    5、异号对称轴在y轴右侧.这个规律可简记为“左同右异”.,2.当x1时,函数yabc.当图象上x1的点在x轴上方时,abc0;当图象上x1的点在x轴上时,abc0;当图象上x1的点在x轴下方时,abc0.同理,可由图象上x1的点判断abc的符号.,例4 将抛物线yx26x5向上平移 2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是( ) Ay(x4)26 By(x4)22 Cy(x2)22 Dy(x1)23,B,例5 若函数y=x2-2x+b的图象与坐标轴有三个交点,则b的取值范围是( ) Ab1且b0 Bb1 C0b1 Db1,A,1.对于y2(x3)22的图象,下列叙述正确的是(

    6、) A顶点坐标为(3,2) B对称轴为y3 C当x3时,y随x的增大而增大 D当x3时,y随x的增大而减小,C,2.下列函数中,当x0时,y值随x值增大而减小的是( ) A. y= B.y=x-1 C. D.y=-3x2,D,3.已知二次函数y=x22bxc,当x1时,y的值随x值的增大而减小,则实数b的取值范围是( ) Ab1 Bb1 Cb1 Db1,解析:二次项系数为10,抛物线开口向下,在对称轴右侧,y的值随x值的增大而减小,由题设可知,当x1时,y的值随x值的增大而减小,抛物线y=x22bxc的对称轴应在直线x=1的左侧而抛物线y=x22bxc的对称轴 ,即b1,故选择D .,D,4.

    7、如图,抛物线y=ax2+bx+c(a0)与x轴一个交点为(-2,0),对称轴为直线x=1,则y0时x的范围是( ) Ax4或x-2 B-2x4 C-2x3 D0x3,B,5.若抛物线 y=7(x+4)21平移得到 y=7x2,则可能( ) A.先向左平移4个单位,再向上平移1个单位 B.先向右平移4个单位,再向上平移1个单位 C.先向左平移1个单位,再向下平移4个单位 D.先向右平移1个单位,再向下平移4个单位,B,例6 已知关于x的二次函数,当x=1时,函数值为10,当x=1时,函数值为4,当x=2时,函数值为7,求这个二次函数的解析式.,待定系数法,解:设所求的二次函数为yax2+bxc,

    8、 由题意得:,解得, a=2,b=3,c=5., 所求的二次函数为y2x23x5.,6.已知抛物线y=ax2+bx+c与抛物线y=x23x+7的形状相同,顶点在直线x=1上,且顶点到x轴的距离为5,请写出满足此条件的抛物线的表达式.,解:抛物线y=ax2+bx+c与抛物线y=x23x+7的形状 相同 a=1或1 又顶点在直线x=1上,且顶点到x轴的距离为5, 顶点为(1,5)或(1,5) 所以其表达式为: (1) y=(x1)2+5 (2) y=(x1)25 (3) y=(x1)2+5 (4) y=(x1)25,例7 某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且

    9、获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数ykxb,且x65时,y55;x75时,y45. (1)求一次函数的表达式; (2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?,考点三 二次函数的应用,解:(1)根据题意,得,解得k=-1,b=120.故所求一次函数的表达式为y=-x+120.,(2)W=(x-60)(-x+120)=-x2+180x-7200=-(x-90)2+900,抛物线的开口向下, 当x90时,W随x的增大而增大, 而60x60(1+45%),即60x87, 当x=

    10、87时,W有最大值,此时W=-(87-90)2+900=891.,7.一家电脑公司推出一款新型电脑,投放市场以来3个月的利润情况如图所示,该图可以近似看作为抛物线的一部分,请结合图象,解答以下问题:,(1)求该抛物线对应的二次函数解析式;(2)该公司在经营此款电脑过程中,第几月的利润最大?最大利润是多少? (3)若照此经营下去,请你结合所学的知识,对公司在此款电脑的经营状况(是否亏损?何时亏损?)作预测分析,(2) y=-x2+14x=-(x-7)2+49.即当x=7时,利润最大,y=49(万元),(3) 没有利润,即y=-x2+14x=0.解得x1=0(舍去)或x2=14,而这时利润为滑坡状

    11、态,所以第15个月,公司亏损.,例8 如图,梯形ABCD中,ABDC,ABC90,A45,AB30,BCx,其中15x30.作DEAB于点E,将ADE沿直线DE折叠,点A落在F处,DF交BC于点G. (1)用含有x的代数式表示BF的长; (2)设四边形DEBG的面积为S,求S与x的函数关系式; (3)当x为何值时,S有最大值?并求出这个最大值,解:(1)由题意,得EF=AE=DE=BC=x,AB=30. BF=2x-30.,(2)F=A=45,CBF=ABC=90, BGF=F=45,BG=BF=2x-30. 所以SDEF-SGBF= DE2- BF2= x2- (2x-30)2= x2+60

    12、x-450.,(3)S= x2+60x-450= (x-20)2+150. a= 0,152030, 当x=20时,S有最大值, 最大值为150.,8.张大伯准备用40m长的木栏围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长25m的墙,设计了如图一个矩形的羊圈.,(1)请你求出张大伯矩形羊圈的面积; (2)请你判断他的设计方案是否合理?如果合理,直接答合理;如果不合理又该如何设计?并说明理由.,解:(1)由题意,得羊圈的长为25m,宽为(40-25)2=7.5(m). 故羊圈的面积为257.5=187.5(m2),(2)设羊圈与墙垂直的一边为xm,则与墙相对的一边

    13、长为(40-2x)m,羊圈的面积S=x(40-2x)=-2x2+40x=-2(x-10)2+200,(0x20). 因为01020,所以当x=10时,S有最大值,此时S=200. 故张大伯的设计不合理.羊圈与墙垂直的两边长为10m,而与墙相对的一边长为(40-2x)m=20m.,例9 如图,O为坐标原点,边长为 的正方形OABC的顶点A在x轴的正半轴上,将正方形OABC绕顶点O顺时针旋转75,使点B落在某抛物线的图象上,则该抛物线的解析式为( ),A B C D,考点四 二次函数与特殊四边形的综合,B,二次函数,二次函数的概念,二次函数与一元二次方程的联系,二次函数的图象与性质,课堂小结,不共线三点确定二次函数的表达式,二次函数的应用,见学练优本课时练习,课后作业,

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:20春九数下(湘教版)第1章小结与复习 精品教学课件.ppt
    链接地址:https://www.163wenku.com/p-367694.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库