spc中级统计分析管理工具课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《spc中级统计分析管理工具课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- spc 中级 统计分析 管理工具 课件
- 资源描述:
-
1、中中 级级 统统 计计 分分 析析Senior Process Statistical Analysis统统 计计 过过 程程 分分 析析基基 础础 知知 识识 数据统计分析目的和作用 数据67666564636261609876543210数数据据频频率率数数据据直直方方图图636064626364636266646062616562636663676463626563656162646361平均值:63.1最大值:67最小值:60样本数:30666462609876543210数数据据频频率率均值63.1标准差1.729N30数数据据直直方方图图正态性拟合数据的分类和特点 压力泵的一组读数
2、(Mpa):200,215.3,211.5,218.2,220 产品表面刮伤数(处):1,5,3,6,8,101)连续的读数,不一定是整数,一般需要专用的量具、仪器进行测量后读数计量性的数据2)不连续的数据,自然数,一般通过计数得到,不一定需要专用的量具、仪器来测量计数性的数据ONOFF统计分析的关键参数?中级统计分析中的关键参数 计量性数据 度量分布位置的参数 均值 中位数 众数 度量离散程度的参数 标准差 极差 计数性数据 度量分布中的比例 度量分布中的比率中级统计分析技术应用数据类型数据类型单样本单样本双样本双样本成对样本成对样本多个样本多个样本可视化工具可视化工具圆点图箱式图散布图圆点
3、图等值线Tukey均值多变量散点图直方图箱式图差异分析圆点图茎叶图箱式图位置检验位置检验(正态假设正态假设)单样本t检验双样本t检验成对样本t检验方差分析ANOVA位置检验位置检验(无分布假无分布假设设)Fisher检验Tukey末数检验Fisher检验Kruskal-Wallis检验Wilcoxon检验Kruskal-Wallis检验Wilcoxon检验变异检验变异检验 单样本2检验F检验Bartlett(正态)Levene(无分布假设)比例检验比例检验 单样本比例双样本比例检验或相关P控制图+置信区间比率检验比率检验柏松比率检验U控制图+置信区间可可 视视 化化 工工 具具Visualiz
4、e Tools计量性数据的分布可视化 圆点图:检查并比较分布 箱式图:检查并比较分布 比较变量的汇总或单个值 直方图 检查并比较分布 茎叶图 检查并比较分布圆点图 使用点图估计数据的形状和中心趋势。点图与直方图类似,分为多个区间。但是,具有少量数据时,点图可能比直方图更有用,原因在于:一般情况下,点图比直方图包含的区间更多。每个点都表示单独的观测值(或者少量观测值)。点图对于比较数据组也非常有用。点图-单变量示例您为一家洗发精制造商工作,您需要确保瓶盖的紧固程度适当。如果瓶盖扣得过松,则有可能在装运过程中脱落。如果扣得过紧,消费者可能很难打开(尤其是在洗浴过程中)。您随机抽取一些瓶子样本,并检
5、测打开瓶盖所需的扭矩。创建一个点图来评估数据并确定样本与目标值 18 的接近程度。36322824201612扭扭矩矩圆圆点点图图洗发水瓶盖扭力解释结果解释结果大多数瓶盖紧固时的扭矩在 14 到 24 之间。只有 1 个瓶盖很松,扭矩小于 11。但是,分布呈正向偏斜,有些瓶盖拧得过紧。许多瓶盖需要大于 24 的扭矩才能打开,5 个瓶盖的扭矩大于 33,这几乎是目标值的两倍。点图-多变量示例您的公司在 2 台机器上生产塑料管件,您想检验管件直径的一致性。您要测量 2 台机器在 3 周内生产的管件,每周各测量 10 个管件。创建一个内部含组(按机器分组每个星期的符号)的点图来检验分布情况。解释结果
6、解释结果机器 2 生产的管件的直径在各周似乎都比较稳定。但是,机器 1 生产的管件的直径变异性每周都在增加:第 1 个星期的直径范围约为 4.3 到 5.2 第 2 个星期的直径范围约为 5.0 到 7.0 第 3 个星期的直径范围约为 4.9 到 8.8箱图四分位数四分位数 四分位数是将数据样本分成四个相等部分的值。利用四分位数,可以快速评估数据集的展开和中心趋势这是了解数据的重要前期步骤。下四分位数(Q1)25%的数据小于等于此值。第二个四分位数(Q2)中位数。50%的数据小于等于此值。上四分位数(Q3)75%的数据小于等于此值。四分位间距下四分位数与上四分位数之间的距离(Q3-Q1);因
7、此,它跨越数据中间部分,即50%。Q1:计算k=(n+1)/4,如果结果是整数,那么 Q1=Xk,否则 Q1=1/2(XINT(k)-1+XINT(k)+1)。Q2:计算k=2(n+1)/4,如果结果是整数,那么 Q2=Xk,否则 Q2=1/2(XINT(k)-1+XINT(k)+1)。Q3:计算k=3(n+1)/4,如果结果是整数,那么 Q3=Xk,否则 Q3=1/2(XINT(k)-1+XINT(k)+1)。IQR:Q3-Q1例如,对于以下数据:7,9,16,36,39,45,45,46,48,51,求:Q1,Q2,Q3,IQR。结果如下:Q1=14.25Q2(中位数)=42Q3=46.5
8、0四分位间距=46.50-14.25,或 32.25箱图 箱线图(也称为方框须线图)可用来评估和比较样本分布。25%25%25%25%最大值:Q3+1.5(Q3-Q1)最小值:Q1-1.5(Q3-Q1)Q3:3rd四分位数Q2:中位数:2nd 四分为数Q1:1st 四分位数异常点:箱图两边的胡须长度不能够超过1.5(Q3-Q1),超过着两根胡须的观察值使用不同的符号表示箱图示例-单变量您想要检验地毯产品的总体耐用性。地毯产品的样本放在四所住宅内,然后测量 60 天后的耐用性。创建一个箱线图来检验耐用性得分的分布情况。22.520.017.515.012.510.07.55.0耐耐用用性性耐耐用
9、用性性 的的箱箱线线图图该箱线图显示:耐用性得分的中位数为 12.95 四分位数间距为 10.575 到 17.24。没有出现异常值。间距为 7.03 到 22.5。中位数上方较长的上部须线和较大的方框表明数据略呈正偏斜分布-分布的右尾长于左尾箱图示例-多变量绘制前面点图中所用多变量的例子。您的公司2台设备都生产塑料管件,您很关心直径的一致性问题。您要测量每台机器在 3 周内生产的管件,每周各测量 10 个管件。创建一个箱线图来检验分布情况。机 器21第 3 个 星 期第 2 个 星 期第 1 个 星 期第 3 个 星 期第 2 个 星 期第 1 个 星 期987654数数据据第第 1 1 个
10、个 星星 期期,第第 2 2 个个 星星 期期,第第 3 3 个个 星星 期期 的的 箱箱 线线 图图直方图-示例与观察用于检查样本数据的形状和分布情况。直方图将样本值划分为许多称为区间 的间隔。条形表示落于每个区间内的观测值的数量(频率)。示例:您为一家洗发精制造商工作,您需要确保瓶盖的紧固程度适当。如果瓶盖扣得过松,则有可能在装运过程中脱落。如果扣得过紧,消费者可能很难打开(尤其是在洗浴过程中)。您随机抽取一些瓶子样本,并检测打开瓶盖所需的扭矩。创建一个直方图来评估数据并确定样本与目标值 18 的接近程度。3632282420161214121086420扭扭矩矩频频率率扭扭矩矩 的的直直
11、方方图图直直 方方 图图正常型正常型说明:中间高,两边低,有集中趋势.结论:左右对称分配(常态分配),显示制程在正常运转直直 方方 图图缺齿型(凹凸不平型)缺齿型(凹凸不平型)说明:高低不一,有缺齿情形。不正常的分配,系因测定值或换算方法有偏差,次数分配不当所形成。结论::稽查员对测定值有偏好现象,如对5、10之数字偏好;或是假造数据。测量仪器不精密或组数的宽度不是倍数时亦有此情况直直 方方 图图切边型(断裂型)切边型(断裂型)说明:有一端被切断结论:原因为数据经过全检过,或制程本身有经过全检过,会出现的形状。若剔除某规格以上时,则切边在靠近右边形成直直 方方 图图离岛型离岛型说明:在右端或左
12、端形成小岛.结论:测定有错误,工程调节错误或使用不同原料所引起。一定有异常原因存在,只在去除,即可合乎制和要求,制出合规格的制品直直 方方 图图高原型高原型说明:形状似高原状。结论:不同平均值的分配混在一起,应层别之后再做直方图比较直直 方方 图图双峰型双峰型说明:有两个高峰出现.结论:有两种分配相混合,例如两部机器或两家不同供应商,有差异时,会出现此种形状,因测定值受不同的原因影响,应予层别后再作直方图直直 方方 图图偏态型(偏态分配)偏态型(偏态分配)说明:高处偏向一边,另一边低,拖长尾巴。可分偏右边,偏左边偏右边:例如,微量成分的含有率等,不能取到某值以下的值时,所出现的形状.偏左边:例
13、如,成分含有高纯度的含有率等,不能取到某值以上的值时,就会出现的形状.结论:尾巴拖长时,应检讨是否在技术上能够接受,工具磨损或松动时,亦有此种现象发生.茎叶图-基础 该图类似于直方图,只不过它不是使用条形而是使用实际数据值的数字来表示每个区间(行)的频率 比直方图更简单,不用计算 可以对数据进行重新组织,直方图不可 不用电脑可手工直接进行绘制 快速可视化将数据4 55 166 756茎叶图-示例 55454966534158566063 4591 55386 6603作业题 如果数字为小数怎么做法呢?601.4601.6598.0601.4599.4600.0600.2601.2598.459
14、9.0601.2601.0600.8597.6601.6599.4601.2598.4599.2598.8茎叶图显示茎叶图显示:EX.茎叶图 EX.N =20叶单位=0.10 1 597 6 4 598 044 5 598 8 9 599 0244 9 599(2)600 02 9 600 8 8 601 022244 2 601 66变量变量 平均值平均值 最小值最小值 中位数中位数 最大值最大值EX.599.99 597.60 600.10 601.60散布图 用于通过相对于一个变量绘制另一个变量来图示说明两个变量之间的关系。散点图也可用于绘制随时间变化的变量。简单形式分组(两组数据)简单
15、+拟合分组+拟合散布图-简单示例No.12345678910X261014182226303438Y481216202428323640403020100403020100X XY YY Y 与与 X X 的的 散散 点点 图图散点图+拟合-示例您很关心公司生产的相机电池是否能够很好地满足顾客的需要。市场调查显示,如果两次放电之间等待的时间超过 5.25 秒,顾客就会变得很不耐烦。您收集了分别使用过不同时间的电池的一个样本,并在每个电池放电后立即测量了其剩余电压(放电后电压),还测量了各电池再次放电之前必须等待的时间(放电恢复时间)。创建一个散点图来检查结果。在 5.25 秒的临界放电恢复时间
16、处包括一条参考线。1.51.41.31.21.11.00.97.57.06.56.05.55.04.54.03.5放放 电电 后后 电电 压压放放电电恢恢复复5.25放放 电电 恢恢 复复 与与 放放 电电 后后 电电 压压 的的 散散 点点 图图1.51.41.31.21.11.00.97.57.06.56.05.55.04.54.03.5放放 电电 后后 电电 压压放放电电恢恢复复5.25放放 电电 恢恢 复复 与与 放放 电电 后后 电电 压压 的的 散散 点点 图图计数型数据的分布可视化 条形图 饼图条形图 用于比较数据类别的某种度量。每个条形都可以表示某个类别的计数、某个类别的函数(
17、如平均值、合计或标准差)或某个表格中的汇总值。颜色_1水平_1蓝色红色高低高低3.02.52.01.51.00.50.0计计数数颜颜色色_ _1 1,水水平平_ _1 1 的的图图表表颜色密度蓝色高红色低红色低蓝色高红色高红色低蓝色低条形图您是一家生产汽车门板的公司的质量工程师。每周都有一些门板因喷漆瑕疵而被拒收。您怀疑时间段与瑕疵类型之间存在一定的关系。创建一个条形图以确定每种喷漆瑕疵的门板拒收数,并按时间段聚类。选择递减顺序以查看按从最大到最小排列的最外层类别。瑕疵数期间污迹其他草稿钳杆周末夜间傍晚日期周末夜间傍晚日期周末夜间傍晚日期周末夜间傍晚日期20151050百百分分比比瑕瑕疵疵数数
18、,期期间间 的的图图表表所有数据内的百分比。饼图 用于显示每个数据类别相对于整个数据集的比率。简简 单单 假假 设设 检检 验验 分分 析析Basic Hypothesis Test Analysis假设检验基础知识 原材料改变前后产品参数是否一致?过程参数改变前后产品质量是否有变化?缺陷分类和比例是否随着某些因素而存在差异?同样的产品不同的生产线生产,只见是否有差异?几条生产线不同的生产班次的产品之间有无变异?假 设 检 验假设检验的流程定义检验目标声明原假设:H0 VS HA选择风险、和样本量n收集数据并检验假设检验统计和置信区间计算P值P5 或单侧:Ha5双侧:Ha5什么是、和P?几个基
19、本概念 置信度:估计的可信程度。置信区间:对于随机变量,如果1(x1,x2,xn)、2(x1,x2,xn)是来自于样本观测值的两个统计量,存在一个概率1-,使得P(1,2)=1-.那么,随机区间1,2叫做在置信概率1-上的置信区间。置信概率:1-区间估计:随机变量的置信区间1,2Xbar置信下限置信上限1-/2/2两个风险和P值解释正确结论概率:1-错误I概率:错误II概率:正确结论概率:1-接受Ho接受HaHo为真Ha为真结 论事 实第一种风险:拒真概率第二种风险:纳假概率宁可让十个罪人脱逃不可让一个好人受罪!P 值值确定否定假设检验中原假设的适当性。P 值范围介于 0 到 1 之间。p 值
20、越小,错误地否定原假设的概率就越小。进行任何分析之前,请先确定 alpha(a)水平。常用值为 0.05。如果检验统计量的 p 值小于 alpha,则可否定原假设。由于 p 值在假设检验中具有不可或缺的作用,因此 p 值被用于许多统计领域,其中包括基本统计量、线性模型、可靠性和多元分析。关键是要了解每个检验中原假设和备择假设所代表的内容,然后使用 p 值来帮助做出否定原假设的决定。a&b类类错误错误 与与 客户客户 的的 关系关系检验 效率 E=0.8a 类 错误 好的产品 被误认为是 次品。成本:返工 报废虚 警 b 类错误残次品 漏过 检验流向 客户。成本:。漏报 假设检验的选择计数数据计
21、量数据假设检验位置检验变异检验T 检验单样本2水平 双样本2水平 ANOVA 检验多样本?水平 单样本 T双样本 T 比率检验比例检验单样本 X2双样本 F正态性检验和转换处理 正态检验的方法 直方图 圆点图 概率纸 手/自动正态转换的方法 1/X SQRT(X)Lg(X)BOX-COX 自动转换数据的正态转换和应用案例 案例分析 BOX-COX转换演示及其分析计量性数据计量性数据假设检验分类 位置位置检验检验(正态假设正态假设)单样本t检验 双样本t检验 成对样本t检验 方差分析ANOVA 变异变异检验检验 单样本2检验 双样本F检验 Bartlett(正态)Levene(无分布假设)抽样的
22、概念抽样的概念总体总体研究对象的全部为什么我们要抽样?抽样 为什么 必须 随机?抽样 误差 的 可能 性。抽样数量 的 决定 基于抽样,我们可以对总体进行推断样本样本:总体 的 一部分-子集1994Dr.MikelJ.HarryV3.0均值相等 的 假设检验 以下的 直方图 展示 两个国家 A 和 B 的 居民身高两个样本 的 大小 为 100,测量单位 为 英寸 国家 B 的 居民平均身高 比 国家 A 高吗?Country A国家A Country B 国家B inch 英寸60.0 62.064.066.068.070.072.074.076.078.080.0假设的假设的 特性特性 原
23、假设原假设(Ho):通常描述 过程状态 提出 假设 基于证据 拒绝或接受备择假设备择假设(Ha):通常描述不同 使用 Minitab 1994Dr.MikelJ.HarryV3.0假设检验 有罪无罪 案例 美国司法系统常被用来作为假设检验的 例子。在美国,除非有确凿证据,否则我们 只能认为 对象无罪。原假设:“此人 无罪。”我们需要强有力的证据来说服陪审团。如果真相已知时如果真相已知时,假设推断的结果会是什么?假设推断的结果会是什么?Ho:此人无罪 Ha:此人有罪单样本t检验 对九个小配件进行了测量。根据历史经验,小配件的测量数据的分布接近于正态,但假设不知道s。为了检验总体平均值是否为5并获
24、得平均值的90%置信区间,需要使用t过程。值 4.9 5.1 4.6 5.0 5.1 4.7 4.4 4.7 4.6结果结果:单样本单样本 T:值值 mu=5 与 5 的检验 平均值变量 N 平均值 标准差 标准误 90%置信区间 T P值 9 4.7889 0.2472 0.0824 (4.6357,4.9421)-2.56 0.034单样本t检验的用途 根据刚才的例子,总结一下单样本t检验的使用场合 计量性数据 正态分布(近似)单个样本的位置(均值)检验 目标值已知双样本t检验案例 为了提高家庭暖气系统的效率,进行了一项旨在评估两种设备功效的研究。安装其中一种设备后,对房舍的能耗进行了测量
25、。这两种设备分别是电动气闸(Damper=1)和热活化气闸(Damper=2)。能耗数据(BTU.In)堆叠在一列中,另外还有一个分组列(Damper),包含用于表示总体的标识符或下标。假设进行了方差检验,并且没有发现方差不等的证据。现在,您要确定是否有证据证明这两种设备之间的差值不为零,以比较出这两种设备的功效。炉子炉子.MTW双样本双样本 T 检验和置信区间检验和置信区间:气闸内置能量消耗气闸内置能量消耗,气闸气闸 气闸内置能量消耗 双样本 T 平均值气闸 N 平均值 标准差 标准误差1 40 9.91 3.02 0.482 50 10.14 2.77 0.39差值=mu(1)-mu(2)
展开阅读全文