20春九数下(湘教版)1.5 第1课时 抛物线形二次函数(精品学案).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《20春九数下(湘教版)1.5 第1课时 抛物线形二次函数(精品学案).doc》由用户(田田田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 20春九数下湘教版1.5 第1课时 抛物线形二次函数精品学案 20 春九数下 湘教版 1.5 课时 抛物线 二次 函数 精品 下载 _九年级下册_湘教版(2024)_数学_初中
- 资源描述:
-
1、优秀领先 飞翔梦想 成人成才1.5 二次函数的应用第1课时 抛物线形二次函数学习目的【知识与技能】能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能利用二次函数的知识解决实际问题.【过程与方法】经历运用二次函数解决实际问题的探究过程,进一步体验运用数学方法描述变量之间的依赖关系,体会二次函数是解决实际问题的重要模型,提高运用数学知识解决实际问题的能力.【情感态度】1.体验函数是有效的描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具.2.敢于面对在解决实际问题时碰到的困难,积累运用知识解决问题的成功经验.【学习重点】用抛物线的知识解决拱桥类问题.【学习难点】将实际问题
2、转化为抛物线的知识来解决.自学过程一、情境导入,初步认识通过预习P29页的内容,完成下面各题.1.要求出教材P29动脑筋中“拱顶离水面的高度变化情况”,你准备采取什么办法?2.根据教材P29图1-18,你猜测是什么样的函数呢?3.怎样建立直角坐标系比较简便呢?试着画一画它的草图看看!4.根据图象你能求出函数的解析式吗?试一试!二、思考探究,获取新知探究 直观图象的建模应用例1 某工厂的大门是一抛物线形水泥建筑物,大门的地面宽度为8m,两侧距地面3m高处各有一盏壁灯,两壁灯之间的水平距离是6m,如图所示,则厂门的高(水泥建筑物厚度不计,精确到0.1m)约为( )A.6.9m B.7.0m C.7
3、.1m D.6.8m【分析】因为大门是抛物线形,所以建立二次函数模型来解决问题.先建立平面直角坐标系,如图,设大门地面宽度为AB,两壁灯之间的水平距离为CD,则B,D坐标分别为(4,0),(3,3),设抛物线解析式为y=ax2+h.把(3,3),(4,0)代入解析式求得h6.9.故选A.【自学说明】根据直观图象建立恰当的直角坐标系和解析式.例2 小红家门前有一座抛物线形拱桥,如图,当水面在l时,拱顶离水面2m,水面宽4m,水面下降1m时,水面宽度增加多少?【分析】拱桥类问题一般是转化为二次函数的知识来解决.解:由题意建立如图的直角坐标系,设抛物线的解析式y=ax2,抛物线经过点A(2,-2),
展开阅读全文