函数及其表示一等奖-公开课课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《函数及其表示一等奖-公开课课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 及其 表示 一等奖 公开 课件
- 资源描述:
-
1、函数的概念(函数的概念(1 1)1.2.11.2.1一、回顾初中学习的函数概念 设在一个变化过程中,有两个变量x与y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说y是x的函数,x叫做自变量 请你举出这样的例子 请同学们考虑以下两个问题:请同学们考虑以下两个问题:是是同同一一个个函函数数吗吗?与与)(是是函函数数吗吗?xxyxyy221)1(显然,仅用初中函数的概念很难回答这些显然,仅用初中函数的概念很难回答这些问题。因此,需要从新的高度认识函数。问题。因此,需要从新的高度认识函数。二、下面先看几个实例:问题:(1)写出时间t的变化范围的集合A.A=t|1979t2001 (2)写出臭
2、氧层空洞面积S的变化范围的集合B.B=S|0S26 由问题的实际意义可知,对于数集A中的每一个时间t,按照图中曲线,在数集B中都有唯一确定的臭氧层空洞面积S和它对应.国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高。表1-1中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化。时间(年)时间(年)19911992199319941995199619971998199920002001城镇居民家城镇居民家庭恩格尔系庭恩格尔系数(数(%)53.852.950.149.949.948.646.444.541.939.237.9
3、表表1-11-1问题:(1)写出时间t的变化范围的集合A.A=t|1991t2001 (2)写出恩格尔系数的变化范围的集合B.B=53.8,52.9,50.1,49.9,48.6,46.4,44.5,41.9,39.2,37.9 由问题的实际意义可知,对于数集A中的每一个时间t,按照表中数据,在数集B中都有唯一确定的恩格尔系数和它对应.不同点不同点共同点共同点实例(实例(1)是用解析式刻画变量之间的对应关系,)是用解析式刻画变量之间的对应关系,实例(实例(2)是用图象刻画变量之间的对应关系,)是用图象刻画变量之间的对应关系,实例(实例(3)是用表格刻画变量之间的对应关系;)是用表格刻画变量之间
4、的对应关系;(1)都有两个非空数集)都有两个非空数集(2)两个数集之间都有一种确定的对应关系)两个数集之间都有一种确定的对应关系问题:三个实例有什么共同点和不同点?问题:三个实例有什么共同点和不同点?其中x叫做自变量,x的取值范围A叫作函数的定义域(domain);与x的值对应的y值叫作函数值,函数值的集合 叫作函数的值域(range).值域是集合B的子集.新课新课 1、函数定义 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数(function),记作 y=f(x),xA
5、Axxf)(2对概念的理解 (1)定义域、值域和对应关系是决定函数的三要素,这是一个整体.一般来说值域由定义域和对应关系所确定,因为对于定义域中的数x,按照确定的对应关系f,在集合B中都有唯一确定的数f(x)和x对应.(2)记住y=f(x)(x)=x2,对应关系f就是“取平方”,而对于 ,对应关系f就是“开平方”,f就是函数符号,=g(x),y=u(x)等 xxf)(3用函数定义理解初中学习过的函数问:我们已经学过了那些函数?答:一次函数、二次函数和反比例函数.请填写下表:函数函数一次函数一次函数二次函数二次函数反比函数反比函数a0 0a0 0对应关系对应关系定义域定义域值域值域 4请具体写出
6、一个一次函数、二次函数和反比例函数,并作出图象.求求函函数数的的定定义义域域;已已知知函函数数例例)1(213)(1.xxxf课堂例题课堂例题的的值值;,求求已已知知函函数数例例)32()3()2(213)(1.ffxxxf .)1(),(,0)3(213)(1.的的值值求求时时当当已已知知函函数数例例 afafaxxxf.13113.2的定义域和求函数例xyxy0|1,0|1|0|)()1()(0 xxxxxxxxxxxxxf、且、的定义域为、函数练习D CB A 1-2x1,x|xD -2x1,x|xC-2x|xB 1x|xA)(2或、且、的定义域为则函数、已知练习)(,11)(xffxx
7、fCC?定义域的的为何值时,函数、当练习R31282)(2kxkxkxxfk.)(10.,1201004)2(0.012)(222R01R的定义域为时,函数当有意义对时,当时,当都有意义对一切,的定义域为解:xfkRxkxkxkkkkkRxkxkxxf实数集实数集R R 使分母不等于使分母不等于0 0的实数的集合的实数的集合使根号内的式子大于或等于使根号内的式子大于或等于0 0的实数的集合的实数的集合使各部分式子都有意义的实数的集合使各部分式子都有意义的实数的集合(即各集合的交集即各集合的交集)使实际问题有意义的实数的集合使实际问题有意义的实数的集合 (3)(3)如果如果y=f(x)是二次根式
8、,则定义域是是二次根式,则定义域是(4)(4)如果如果y=f(x)是由几个部分的式子构成的,则定义域是是由几个部分的式子构成的,则定义域是(1)(1)如果如果y=f(x)是整式,则定义域是是整式,则定义域是(2)(2)如果如果y=f(x)是分式,则定义域是是分式,则定义域是(5)(5)如果是实际问题,是如果是实际问题,是(1)试说明函数定义中有几个要素?)试说明函数定义中有几个要素?定义域、值域、对应法则定义域、值域、对应法则定义域、值域、对应关系是决定函数的三要素,是定义域、值域、对应关系是决定函数的三要素,是一个整体;一个整体;值域由定义域、对应法则惟一确定;值域由定义域、对应法则惟一确定
9、;函数符号函数符号y=f(x)表示表示“y是是x的函数的函数”而不是表示而不是表示“y等于等于f与与x的乘积。的乘积。判断正误判断正误1、函数值域中的每一个数都有定义域中的一个数与、函数值域中的每一个数都有定义域中的一个数与 之对应之对应2、函数的定义域和值域一定是无限集合、函数的定义域和值域一定是无限集合3、定义域和对应关系确定后,函数值域也就确定、定义域和对应关系确定后,函数值域也就确定4、若函数的定义域只有一个元素,则值域也只有一、若函数的定义域只有一个元素,则值域也只有一 个元素个元素5、对于不同的、对于不同的x,y的值也不同的值也不同 6、f(a)表示当表示当x=a时,函数时,函数f
10、(x)的值,是一个常量的值,是一个常量(2)如何判断给定的两个变量之间是否具有)如何判断给定的两个变量之间是否具有函数关系?函数关系?定义域和对应法则是否给出?定义域和对应法则是否给出?根据所给对应法则,自变量根据所给对应法则,自变量x在其定义域在其定义域中的每一个值,是否都有唯一确定的一个函中的每一个值,是否都有唯一确定的一个函数值数值y和它对应。和它对应。判断下列对应能否表示判断下列对应能否表示y是是x的函数的函数(1)y=|x|(2)|y|=x(3)y=x 2 (4)y2 =x (5)y2+x2=1 (6)y2-x2=1 (1)能能 (2)不能不能 (5)不能不能 (3)能能 (4)不能
11、不能 (6)不能不能 判断下列图象能表示函数图象的是(判断下列图象能表示函数图象的是()xy0(A)xy0(B)xy0(D)xy0(C)D课堂总结课堂总结 1用集合与对应的语言定义的函数.2如何求简单函数定义域和函数值.求定义域时通常要注意以下几点:(1)开偶次方根需非负;(2)分母不等于零;(3)具体函数的定义域要求.课后作业课后作业 组第1题(1)(2)(3)(4).课本第44页复习参考题A组第6题.函数的概念(函数的概念(2 2)1.2.11.2.1复习导入复习导入 问:什么是函数?设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的
12、数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数(function),记作 y=f(x),xA其中x叫做自变量,x的取值范围A叫作函数的定义域(domain);与x的值对应的y值叫作函数值,函数值的集合 叫作函数的值域(range).Axxf)(函数的定义域通常由问题的实际背景确定,如上节课所述的实例.对于给出解析式的函数,而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合.对用解析式表示的函数,可由给定的自变量值代入解析式计算函数值.新课新课 一、求函数的值域例1.求下列函数的值域:76)4(54)3(8)2(3)1(2 xxyxyxyxyR Ryyy
13、 ,0R 2 yy二、区间的概念 研究函数时常会用到区间的概念.设a,b是两个实数,而且ab.我们规定:(1)满足不等式axb的实数x的集合叫做闭区间,表示为a,b;(2)满足不等式axb的实数x的集合叫做开区间,表示为(a,b);(3)满足不等式axb或aa,xb,xb的实数x的集合分别表示为a,+),(a,+),(-,b,(-,b)。“”读作“无穷大”,“”读作“负无穷大”,“+”读作“正无穷大”.区间可在数轴上表示 例例1、试用区间表示下列实集:、试用区间表示下列实集:x|5 x6 (2)x|x 9(3)x|x -1 x|-5 x2(4)x|x 9x|-9 x20例2.求下列函数的值域(
14、用区间表示):76)4(54)3(8)2(3)1(2 xxyxyxyxy),(),0()0,(),(),2 课堂例题课堂例题三、函数的相等 两个函数是同一个函数,应该满足它们的定义域、值域和对应法则都相同由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域相同,并且对应关系完全一致,这两个函数就相等.)4(;)3(;)2(;)()1(?.222332xxyxyxyxyxy 相等相等下列函数中哪个与函数下列函数中哪个与函数例例),0()()1(2 xxxy解解:.)(但是定义域不相同虽然对应关系相同,这个函数与函数Rxxy.)(不相等所以,这个函数与函数Rxxy),()2(33Rxxy
15、 .)(而且定义域也相同不仅对应关系相同,这个函数与函数Rxxy.)(相等所以,这个函数与函数Rxxy .0,0,|)3(2xxxxxxy.)(0,)(不相同与函数时,对应关系但当的定义域都是实数集这个函数与函数RxxyxRRxxy.)(不相等所以,这个函数与函数Rxxy从本例我们还可以看出,相同的对应关系,其表达形式可以不同.,0|)4(2 xxxxy的的定定义义域域是是.)(不不相相同同与与函函数数Rxxy .)(不相等所以,这个函数与函数Rxxy我们还可以用列出表格的方式进行判断我们还可以用列出表格的方式进行判断函数函数定义域定义域对应法则对应法则值域值域RxyxRRRRxy 2)(xy
16、 33xy 2xy xxy2 xyxxyxxyxxyx0|xx0|xx0|yy0|yy0|yy课堂练习课堂练习 1.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h与时间t关系的函数 h=-130t-5t2和二次函数y=130 x-5x2;(2)f(x)=1和g(x)=x0.2.请你再举出函数相等的例子.课堂练习课堂练习2求下列函数的定义域(1)(2)(4)(5)|x|x1)x(fx111)x(f1xx4)x(f213xx1)x(f 已知已知fg(x)的定义域为的定义域为D,则,则f(x)的定义域为的定义域为g(x)在在D上值域。上值域。已知复合函数定义域求原函数定义域已知复
展开阅读全文