函数的概念-公开课一等奖课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《函数的概念-公开课一等奖课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 概念 公开 一等奖 课件
- 资源描述:
-
1、函数的概念-公开课一等奖课件复习提问复习提问1.初中所学的函数的概念是什么?初中所学的函数的概念是什么?复习提问复习提问1.初中所学的函数的概念是什么?初中所学的函数的概念是什么?在一个变化过程中有两个变量在一个变化过程中有两个变量x和和y,如果对于如果对于x的每一个值,的每一个值,y都有唯一的值都有唯一的值与它对应与它对应.那么就说那么就说y是是x的函数,其中的函数,其中x叫做自变量叫做自变量.在一个变化过程中有两个变量在一个变化过程中有两个变量x和和y,如果对于如果对于x的每一个值,的每一个值,y都有唯一的值都有唯一的值与它对应与它对应.那么就说那么就说y是是x的函数,其中的函数,其中x叫
2、做自变量叫做自变量.复习提问复习提问2.初中学过哪些函数?初中学过哪些函数?1.初中所学的函数的概念是什么?初中所学的函数的概念是什么?复习提问复习提问正比例函数、反比例函数、一次函数、正比例函数、反比例函数、一次函数、二次函数等二次函数等.1.初中所学的函数的概念是什么?初中所学的函数的概念是什么?在一个变化过程中有两个变量在一个变化过程中有两个变量x和和y,如果对于如果对于x的每一个值,的每一个值,y都有唯一的值都有唯一的值与它对应与它对应.那么就说那么就说y是是x的函数,其中的函数,其中x叫做自变量叫做自变量.2.初中学过哪些函数?初中学过哪些函数?示例示例1:一枚炮弹发射后,经过:一枚
3、炮弹发射后,经过26s落到落到地面击中目标地面击中目标.炮弹的射高为炮弹的射高为845m,且,且炮弹距地面的高度炮弹距地面的高度h(单位:单位:m)随时间随时间t(单位:单位:s)变化的规律是变化的规律是h130t5t2.新课新课示例示例2:近几十年来,大气层中的臭氧迅:近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空沿问题速减少,因而出现了臭氧层空沿问题.下下图中的曲线显示了南极上空臭氧层空洞图中的曲线显示了南极上空臭氧层空洞的面积从的面积从19792001年的变化情况年的变化情况.示例示例3:国际上常用恩格尔系数反映一个:国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数
4、国家人民生活质量的高低,恩格尔系数越低,生活质量越高,下表中恩格尔系越低,生活质量越高,下表中恩格尔系数随时间数随时间(年年)变化的情况表明,变化的情况表明,“八五八五”计划以来,我国城镇居民的生活质量发计划以来,我国城镇居民的生活质量发生了显著变化生了显著变化.时间时间(年年)199119921993199419951996城镇居民城镇居民家庭恩格家庭恩格尔系数尔系数(%)53.8 52.9 50.149.949.9 48.6时间时间(年年)19971998199920002001城镇居民城镇居民家庭恩格家庭恩格尔系数尔系数(%)“八五八五”计划以来我国城镇居民计划以来我国城镇居民 恩格尔系
5、数变化情况恩格尔系数变化情况1.定义定义形成概念形成概念 设设A、B是非空的数集,如果按照某是非空的数集,如果按照某个确定的对应关系个确定的对应关系f,使对于集合,使对于集合A中的中的任意一个数任意一个数x,在集合,在集合B中都有唯一确定中都有唯一确定的数的数 f(x)和它对应,那么就和它对应,那么就称称f:AB为为从集合从集合A到集合到集合B的一个函数,的一个函数,1.定义定义形成概念形成概念 设设A、B是非空的数集,如果按照某是非空的数集,如果按照某个确定的对应关系个确定的对应关系f,使对于集合,使对于集合A中的中的任意一个数任意一个数x,在集合,在集合B中都有唯一确定中都有唯一确定的数的
6、数 f(x)和它对应,那么就和它对应,那么就称称f:AB为为从集合从集合A到集合到集合B的一个函数,记作:的一个函数,记作:yf(x),x A1.定义定义形成概念形成概念 其中,其中,x叫做自变量,叫做自变量,1.定义定义 其中,其中,x叫做自变量,叫做自变量,x的取值范围的取值范围A叫做函数的定义域;叫做函数的定义域;1.定义定义 其中,其中,x叫做自变量,叫做自变量,x的取值范围的取值范围A叫做函数的定义域;叫做函数的定义域;与与x值相对应的值相对应的y的值叫做函数值,的值叫做函数值,1.定义定义 其中,其中,x叫做自变量,叫做自变量,x的取值范围的取值范围A叫做函数的定义域;叫做函数的定
7、义域;与与x值相对应的值相对应的y的值叫做函数值,的值叫做函数值,函数值的集合函数值的集合 f(x)|x A叫做函数叫做函数的值域的值域.1.定义定义例例1若物体以速度若物体以速度v作匀速直线运动,则作匀速直线运动,则物体通过的距离物体通过的距离S与经过的时间与经过的时间t的关系的关系是是Svt.下列例下列例1、例、例2、例、例3是否满足函数定义是否满足函数定义例例2某水库的存水量某水库的存水量Q与水深与水深h(指最深处指最深处的水深的水深)如下表:如下表:水深水深h(米米)0510152025存水量存水量Q(立方立方)0204090 160 275例例3设时间为设时间为t,气温为,气温为T(
8、),自动测温,自动测温仪测得某地某日从凌晨仪测得某地某日从凌晨0点到半夜点到半夜24点点的温度曲线如下图的温度曲线如下图.201510506 12 18 24 定义域定义域A;值域值域f(x)|xR;对应法则对应法则f.2.函数的三要素函数的三要素:定义域定义域A;值域值域f(x)|xR;对应法则对应法则f.2.函数的三要素函数的三要素:(2)f 表示对应法则,不同函数中表示对应法则,不同函数中f 的具的具 体含义不一样;体含义不一样;(1)函数符号函数符号yf(x)表示表示y是是x的函数,的函数,f(x)不是不是表示表示 f 与与x的乘积;的乘积;3.表示函数的方法:表示函数的方法:解析式:
9、把常量和表示自变量的字母解析式:把常量和表示自变量的字母用一系列运算符号连接起来,得到的用一系列运算符号连接起来,得到的式子叫做解析式式子叫做解析式.列表法:列出表格来表示两个变量之列表法:列出表格来表示两个变量之 间的对应关系间的对应关系.图象法:用图象表示两个变量之间的图象法:用图象表示两个变量之间的对应关系对应关系.一次函数一次函数f(x)axb(a0)4.已学函数的定义域和值域已学函数的定义域和值域4.已学函数的定义域和值域已学函数的定义域和值域定义域定义域R,值域,值域R.一次函数一次函数f(x)axb(a0)4.已学函数的定义域和值域已学函数的定义域和值域定义域定义域R,值域,值域
10、R.)0()(kxkxf反比例函数反比例函数 一次函数一次函数f(x)axb(a0)4.已学函数的定义域和值域已学函数的定义域和值域定义域定义域R,值域,值域R.定义域定义域x|x0,值域,值域y|y0.一次函数一次函数f(x)axb(a0)0()(kxkxf反比例函数反比例函数4.已学函数的定义域和值域已学函数的定义域和值域二次函数二次函数f(x)ax2bxc(a0)4.已学函数的定义域和值域已学函数的定义域和值域二次函数二次函数f(x)ax2bxc(a0)定义域:定义域:R,4.已学函数的定义域和值域已学函数的定义域和值域二次函数二次函数f(x)ax2bxc(a0)定义域:定义域:R,值域
11、:值域:.44|2 abacyy.44|2 abacyy当当a0时,时,当当a0时,时,5.求函数定义域应注意的问题:求函数定义域应注意的问题:1.一般情况下,应使函数解析式有意义,如一般情况下,应使函数解析式有意义,如 5.求函数定义域应注意的问题:求函数定义域应注意的问题:(1)分母不为零分母不为零;1.一般情况下,应使函数解析式有意义,如一般情况下,应使函数解析式有意义,如 5.求函数定义域应注意的问题:求函数定义域应注意的问题:(2)偶次根式的被开方数非负;偶次根式的被开方数非负;(1)分母不为零分母不为零;1.一般情况下,应使函数解析式有意义,如一般情况下,应使函数解析式有意义,如
12、5.求函数定义域应注意的问题:求函数定义域应注意的问题:例例1求下列函数的定义域:求下列函数的定义域:例题讲解例题讲解;21)(xxf;23)(xxf.211)(xxxf 解题时要注意书写过程,注意紧扣函解题时要注意书写过程,注意紧扣函数定义域的含义数定义域的含义.由本例可知,求函数的由本例可知,求函数的定义域就是根据使函数式有意义的条件,定义域就是根据使函数式有意义的条件,自变量应满足的不等式或不等式组,解自变量应满足的不等式或不等式组,解不等式或不等式组就得到所求的函数的不等式或不等式组就得到所求的函数的定义域定义域.强调:强调:若若f(x)是整式,则函数的定义域是实数是整式,则函数的定义
13、域是实数集集R;若若f(x)是分式,则函数的定义域是使分是分式,则函数的定义域是使分母不等于母不等于0的实数集;的实数集;若若f(x)是二次根式,则函数的定义域是是二次根式,则函数的定义域是使根号内的式子大于或等于使根号内的式子大于或等于0的实数集合;的实数集合;强调:强调:求用解析式求用解析式yf(x)表示的函数的定义域表示的函数的定义域时,常有以下几种情况:时,常有以下几种情况:若若f(x)是由几个部分的数学式子构成的,是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义则函数的定义域是使各部分式子都有意义的实数集合;的实数集合;若若f(x)是由实际问题抽象出来的函数是由实际
14、问题抽象出来的函数,则则函数的定义域应符合实际问题函数的定义域应符合实际问题 强调:强调:例例2已知函数已知函数f(x)3x25x2,求,求f(3),).1()2(aff,;2xy ;)(2xy ;33xy .2xxy 例例3;2xy ;)(2xy ;33xy .2xxy 例例3例例4下列各组中的两个函数是否为相同的下列各组中的两个函数是否为相同的函数?函数?;与与53)5)(3(21 xyxxxy;与与)1)(1(1121 xxyxxy.52)()52()(221 xxfxxf与与例例4下列各组中的两个函数是否为相同的下列各组中的两个函数是否为相同的函数?函数?;与与53)5)(3(21 x
15、yxxxy;与与)1)(1(1121 xxyxxy.52)()52()(221 xxfxxf与与(定义域不同定义域不同)例例4下列各组中的两个函数是否为相同的下列各组中的两个函数是否为相同的函数?函数?;与与53)5)(3(21 xyxxxy;与与)1)(1(1121 xxyxxy.52)()52()(221 xxfxxf与与(定义域不同定义域不同)(定义域不同定义域不同)例例4下列各组中的两个函数是否为相同的下列各组中的两个函数是否为相同的函数?函数?;与与53)5)(3(21 xyxxxy;与与)1)(1(1121 xxyxxy.52)()52()(221 xxfxxf与与(定义域不同定义
16、域不同)(定义域、值域都不同定义域、值域都不同)(定义域不同定义域不同)教材教材P.19练习第练习第1、2、3题题课堂练习课堂练习课堂小结课堂小结1.函数定义域的求法;函数定义域的求法;2.判断函数是否为同一函数的方法;判断函数是否为同一函数的方法;3.求函数值求函数值课后作业课后作业2.教材教材P.24习题习题1.2第第1、4、6题题.1.阅读教材;阅读教材;讧讨让讪讫讬训议诃评诅诛诰诱诲诳说诵诶请诸诹诺孉孊娈孋孊孍孎孏嫫婿媚子部:孑孒孓孖孚玭昆吡纰妣锴鈚秕庇沘毛部:毜毝毞毟毠毡毢毣毤毥毦绒毨毩毪毫球毭毮毯毰毱毲毳毴毵毶毷毸毹毺毻毼毽毾毵氀氁牦氃氋氄氅氆氇毡氉毡氍氎氏部:氒氐抵坻坁胝阍痻泜汦
17、茋芪柢砥奃睧视蚳蚔呧軧軝崏弤婚怟惛忯岻貾气部:氕氖気氘氙氚氜氝氞氟氠氡氢氤氥氦氧氨氩氪氭氮氯氰氱氲水氵部:氶氷凼氺氻氼氽泛氿汀汃汄汅氽汈汊汋汌泛汏汐汑汒汓汔汕汖汘污污汛汜汞汢汣汥汦汧汨汩汫汬汭汮汯汰汱汲汳汴汵汶汷汸汹汻汼汾汿沀沂沃沄沅沆沇沊沋沌冱沎沏洓沓沔沕沗沘沚沛沜沝沞沠沢沣沤沥沦沨沩沪沫沬沭沮沯沰沱沲沴沵沶沷沸沺沽泀泂泃泅泆泇泈泋泌泍泎泏泐泑泒泓泔泖泗泘泙泚泜溯泞泟泠泤泦泧泩泫泬泭泮泯泱泲泴泵泶泷泸泹泺泾泿洀洂洃洄洅洆洇洈洉洊洌洍洎洏洐洑洒洓洔洕洖洘洙洚洜洝洠洡洢洣洤洦洧洨洫洬洭洮洯洰洱洳洴洵洷洸洹洺洼洽洿浀浂浃浄浈浉浊浌浍浏浐浒浔浕浖浗浘浚浛浜浝浞浟浠浡浢浣浤浥浦浧浨浫浭浯浰浱浲浳浵浶浃
18、浺浻浼浽浾浿涀涁涂涃涄涅涆泾涊涋涍涎涐涑涒涓涔莅涗涘涙涚涜涝涞涟涠涡涢涣涥涧涪涫涬涭涰涱涳涴涶涷涸涹涺涻凉涽涾涿淁淂淃淄淅淆淇淈淉淊淌淍淎淏淐淓淔淕淖淗淙淛淜淞淟淠淢淣淤渌淦淧沦淬淭淯淰淲淳淴涞滍淾淿渀渁渂渃渄渆渇済渋渌渍渎渏渑渒渓渕渖渘渚渜渝渞渟沨渥渧渨渪渫渮渰渱渲渳渵渶渷渹渻渼渽渿湀湁湂湄湅湆湇湈湉湋湌湍湎湏湐湑湒湓湔湕湗湙湚湜湝浈湟湠湡湢湤湥湦湨湩湪湫湬湭湮湰湱湲湳湴湵湶湷湸湹湺湻湼湽満溁溂溄溆溇沩溉溊溋溌溍溎溏溑溒溓溔溕溗溘溙溚溛溞溟溠溡溣溤溥溦溧溨溩溬溭溯溰溱溲涢溴溵溶溷溸溹溻溽溾溿滀滁滂滃沧滆滇滈滉滊涤滍荥滏滐滒滓滖滗滘汇滛滜滝滞滟滠滢滣滦滧滪滫沪滭滮滰滱渗滳滵滶滹滺浐滼滽漀漃漄漅
19、漈漉溇漋漌漍漎漐漑澙熹漗漘漙沤漛漜漝漞漟漡漤漥漦漧漨漪渍漭漮漯漰漱漳漴溆漶漷漹漺漻漼漽漾浆潀颍潂潃潄潅潆潇潈潉潊潋潌潍潎潏潐潒潓洁潕潖潗潘沩潚潜潝潞潟潠潡潢潣润潥潦潧潨潩潪潫潬潭浔溃潱潲潳潴潵潶滗潸潹潺潻潼潽潾涠涩澄澃澅浇涝澈澉澊澋澌澍澎澏湃澐澑澒澓澔澕澖涧澘澙澚澛澜澝澞澟渑澢澣泽澥滪澧澨澪澫澬澭浍澯澰淀澲澳澴澵澶澷澸澹澺澻澼澽澾澿濂濄濅濆濇濈濉濊濋濌濍濎濏濐濑濒濓沵濖濗泞濙濚蒙浕濝濞济濠濡濢濣涛濥濦濧濨濩濪滥浚濭濮濯潍滨濲濳濴濵阔濷濸濹溅濻泺濽滤濿瀀漾瀂瀃灋渎瀇瀈泻瀊沈瀌瀍瀎浏瀐瀒瀓瀔濒瀖瀗泸瀙瀚瀛瀜瀞潇潆瀡瀢瀣瀤瀥潴泷濑瀩瀪瀫瀬瀭瀮瀯弥瀱潋瀳瀴瀵瀶瀷瀸瀹瀺瀻瀼瀽澜瀿灀灁瀺灂沣滠灅灆灇灈灉灊
20、灋灌灍灎灏灐洒灒灓漓灖灗滩灙灚灛灜灏灞灟灠灡灢湾滦灥灦滟灨灪火灬部:灮灱灲灳灴灷灸灹灺灻灼炀炁炂炃炄炅炆炇炈炋炌炍炏炐炑炓炔炕炖炗炘炙炚炛炜炝炞炟炠炡炢炣照炥炦炧炨炩炪炫炯炰炱炲炳炴炵炶炷炻炽炾炿烀烁烃烄烅烆烇烉烊烋烌烍烎烐烑烒烓烔烕烖烗烙烚烜烝烞烠烡烢烣烥烩烪烯烰烱烲烳烃烵烶烷烸烹烺烻烼烾烿焀焁焂焃焄焇焈焉焋焌焍焎焏焐焑焒焓焔焕焖焗焘焙焛焜焝焞焟焠焢焣焤焥焧焨焩焪焫焬焭焮焯焱焲焳焴焵焷焸焹焺焻烧焽焾焿煀煁煂煃煄煅辉煈炼煊煋煌煍煎煏煐煑炜煓煔暖煗煘煚煛煜煝煞煟煠煡茕煣焕煦煨煪煫炀煭煯煰煱煲煳煴煵煶煷煸煹煺煻煼煽煾煿熀熁熂熃熄熅熆熇熈熉熋熌熍熎熏熐熑荧熓熔熕熖炝熘熚熛熜熝熞熠熡熢熣熤熥熦熧熨熩熪
21、熫熬熭熮熯熰颎熳熴熵熶熷熸熹熺熻熼熽炽熿燀烨燂燅燆燇炖燊燋燌燍燎燏磷燑燓燔燖燗燘燚燛燝燞燠燡燢燣燤燥灿燧燨燩燪燫燮燯燰燱燲燳烩燵燵燸燹燺薰燽焘耀爀爁爂爃爄爅爇爈爉爊爋爌烁爎爏爑爒爓爔爕爖烨爘爙爚烂爜爝爞爟爠爡爢爣爤爥爦爧爨爩孛孜孞孠孡孢孥孧孨孪孙孬孭孮孯孰孱孲孳孴孵孶孷孹孻孼孽孾宀部:宄宆宊宍宎宐宑宒宓宔宖実宥宧宨宩宬宭宯宱宲宷宸宺宻宼寀寁寃寈寉寊寋寍寎寏寔寕寖寗寘寙寚宁寝寠寡寣寥寪寭寮寯寰寱寲宝寴寷寸部:寽対尀専尃克尌小部:尐尒尕尗尛尜尞尟尠尢部:尣尢尥尦尨尩尪尫尬尭尮尯尰尴尳尴尵尶尸部:屃屇屐屒屃屔屖屗屘屙屚屛屉扉屟屡屣履屦屧屦屩屪屫山部:敳屮屰屲屳屴屵屶屷屸屹屺屻屼屽屾岃岄岅岆岇岈岉岊岋
22、岌岍岎岏岐岑岒岓岔岕岖岘岙岚岜岝岞岟岠岗岢岣岤岥岦岧岨岪岫岬岮岯岰岲岴岵岶岷岹岺岻岼岽岾岿峀峁峂峃峄峅峆峇峈峉峊峋峌峍峎峏峐峑峒峓崓峖峗峘峚峙峛峜峝峞峟峠峢峣峤峥峦峧峨峩峪峬峫峭峮峯峱峲峳岘峵峷峸峹峺峼峾峿崀崁崂崃崄崅崆崇崈崉崊崋崌崃崎崏昆崒崓崔崕崖崘崚崛崜崝崞崟岽崡峥崣崤崥崦崧崨崩崪崫岽崮崯崰崱崲嵛崴崵崶崷崸崹崺崻崼崽崾崿嵀嵁嵂嵃嵄嵅嵆嵇嵈嵉嵊嵋嵌嵍嵎嵏岚嵑岩嵓嵔嵕嵖岁嵘嵙嵚嵛嵜嵝嵞嵟嵠嵡嵢嵣嵤嵥嵦嵧嵨嵩嵪嵫嵬嵭嵮嵯嵰嵱嵲嵳嵴嵵嵶嵷嵸嵹嵺嵻嵼嵽嵾嵿嶀嵝嶂嶃崭嶅嶆岖嶈嶉嶊嶋嶌嶍嶎嶏嶐嶑嶒嶓嵚嶕嶖嶘嶙嶚嶛嶜嶝嶞嶟峤嶡峣嶣嶤嶥嶦峄峃嶩嶪嶫嶬嶭崄嶯嶰嶱嶲嶳岙嶵嶶嶷嵘嶹岭嶻屿岳帋巀巁巂巃巄巅巆巇巈巉巊
23、岿巌巍巎巏巐巑峦巓巅巕岩巗巘巙巚巛部:巛巜巠巡巢巣巤匘工部:巪巬巭巯己已巳部:巵巶巸卺巺巼巽巾部:巿帀帄帇帉帊帋帍帎帏帑帒帓帔帗帙帚帞帟帠帡帢帣帤帨帩帪帬帯帰帱帲帴帵帷帹帺帻帼帽帾帿幁幂帏幄幅幆幇幈幉幊幋幌幍幎幏幐幑幒幓幖幙幚幛幜幝幞帜幠幡幢幤幥幦幧幨幩幪幭幮幯幰襕干部:幷幺部:幺吆玄兹滋广部:庀庁仄広庅庇庈庉庋庌庍庎庑庖庘庛庝庠庡庢庣庤庥庨庩庪庬庮庯庰庱庲庳庴庵庹庺庻庼庽庿廀厕廃厩廅廆廇廋廌廍庼廏廐廑廒廔荫廖廗廘廙廛廜廞庑廤廥廦廧廨廭廮廯廰痈廲廴部:廵廸廹回乃廽廾部:廿弁弅弆弇弉弋部:弋弌弍弎弐弑弓部:弖弙弚弜弝弞弡弢弣弤弨弩弪弫弬弭弮弰弲弪弴弶弸弻弼弽弿彀彁彂彃彄彅彇彉彋弥彍彏彐部:彑彔彖
24、彗彘彚彛彝彝彝彟彡部:彡彣彧彨彭彮彯彲澎彳部:彳彴彵彶彷彸役彺彻彽彾佛徂徃徆徇徉后徍徎徏径徒従徔徕徖徙徚徛徜徝从徟徕御徢徣徤徥徦徧徨复循徫旁徭微徯徰徱徲德徴徵徶德徸彻徺徻徼徽徾徿忀忁忂忄心部:忄惔愔忇忈忉忊忋忎忏忐忑忒忓忔忕忖忚忛応忝忞忟忡忢忣忥忦忨忩忪忬忭忮忯忰忱忲忳忴念忶汹忸忹忺忻忼忾忿怂怃怄怅怆怇怈怉怊怋怌怍怏怐怑怓怔怗怘怙怚怛怞怟怡怢怣怤怦怩怫怬怭怮怯怰怲怳怴怵怶怷怸怹怺怼悙怿恀恁恂恃恄恅恒恇恈恉恊恌恍恎恏恑恒恓恔恖恗恘恙恚恛恜恝恞恠恡恦恧恫恬恮恰恱恲恴恷恹恺恻恽恾恿悀悁悂悃悆悇悈悊悋悌悍悎悏悐悑悒悓悕悖悗悘悙悚悛悜悝悞悟悡悢悤悥悧悩悪悫悭悮悰悱悳悴悷悹悺悻悼悾悿惀惁惂惃惄惆惈惉惊惋惌
25、惍惎惏惐惑惒惓惔惕惖惗惘惙惚惛惜惝惞惠恶惢惣惤惥惦惧惨惩惪惫惬惮恼恽惴惵惶惸惺惼惽惾惿愀愂愃愄愅愆愇愉愊愋愌愍愎愐愑愒愓愕愖愗愘愙愝愞愠愡愢愣愥愦愧愩愪愫愬愭愮愯愰愱愲愳怆愵愶恺愸愹愺愻愼愽忾愿慀慁慂慃栗慅慆慈慉慊态慏慐慑慒慓慔慖慗惨惭惭慛慜慝慞恸慠慡慢慥慦慧慨慩怄怂慬悯慯慰慲悭慑慵慷慸慹慺慻慽慿憀憁忧憃憄憅憆憇憈憉惫憋憌憍憎憏怜憓憔憕慭憗憘憙憛憜憝憞憟憠憡憢憣愤憥憦憧憨憩憪憬憭怃憯憰憱憳憴憵忆憷憸憹憺憻憼憽憾憿懀懁懂懄懅懆恳懈懊懋怿懔懎懏懐懑懓懔恹懖懗懘懙懚懛懜懝怼懠懡懢懑懤懥懦懧恹懩懪懫懬懭懮懯懰懱惩懳懴懵懒怀悬懹忏懻惧欢慑懿恋戁戂戃戄戅戆懯戈部:戉戊戋戌戍戎戓戋戕彧或戗戙戛戜戝戞戟戠戡戢
展开阅读全文