241平面向量的数量积优秀课件(公开课).ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《241平面向量的数量积优秀课件(公开课).ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 241 平面 向量 数量 优秀 课件 公开
- 资源描述:
-
1、2.4.1平面向量的数量积复习:向量的夹角 已知两个非零向量a和b,在平上任取一点O,作=a,=b,则 叫做向量a与b的夹角)1800(AOB 当 时,a与b;当 时,a与b;当 时,a与b,记作018090反向同向ba 垂直OAOB如果一个物体在力F作用下产生位移S,那么F所做的功为:表示力F的方向与位移S的方向的夹角。位移SOA问题情境FFSW=FW=FS SCOSCOSF是_量,S是_量,W是_量,矢矢矢矢标标思考1:向量的数量积运算与向量的线性运算结果有什么区别?向量线性运算的结果还是向量,但向量的数量积结果是一个数量(实数)。(这个数量的大小与两个向量的长度及其夹角有关)1、数量积的
2、定义已知两个非零向量a和b,它们的夹角为 ,我们把数量叫做向量a与b的数量积(或内积)记作即 并规定 cosbaa bcosbaba00ab bCOSCOS叫做向量b在向量a上的投影。1B)(1B1B(1)思考2:在下列各图中作出b bCOSCOS的几何图形,并说明它的几何意义是什么?OAB(2)abOAB(3)ababAO过b的终点B作OAa的垂线段 ,垂足为 ,则由直角三角形的性质得 =b bCOSCOS1BB1B1OB投影是向量吗投影是一个数值(实数),当为锐角时,它是正值;当为钝角时,它是负值。时时b bCOSCOS时时b bCOSCOS时时b bCOSCOS018090b bb b0
3、B数量积ab等于a的长度aa与b在a的方向上的投影b bCOSCOS的积ab的几何意义:2、向量数量积的几何意义ab=aab bCOSCOSa ab bOBOB b bCOSCOS3、向量数量积的性质设a a,b b都是非零向量,e e是与b b的方向相同的单位向量,是a与e的夹角,则 (1)e ea a=_;a ae e=_ (2)a ab b_a ab b=0(3)当a a与b b同向时,a ab b=_ 当a a与b b异向时,a ab b=_ a aa a=_=(4)a ab _b _ aab b(5)cos _a aCOSCOSa aCOSCOSaab b-a-ab b2ababaa
4、b=aab bCOSCOSe ea a=a ae e=a aCOSCOS性质42aab=aab bCOSCOS(1)若a=0a=0,则对任意向量b b,有a ab=b=0()(2)若a 0a 0,则对任意非零向量b b,有a a b b 0 ()(3)若a 0a 0,且a ab b=0,则b=0 0 ()(4)若a ab b=0,则a=0a=0或b=0b=0 ()(5)对任意向量a a有 ()(6)若a 0a 0,且a ab=ab=ac c,则b=c b=c ()4、反馈练习:判断正误a a=|a|=|a|向量的数量积是向量之间的一种乘法,与数的乘法是有区别的,1:平行且方向相同与因为解BCA
展开阅读全文