《直线的两点式方程》课件1优质公开课人教A版必修2.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《直线的两点式方程》课件1优质公开课人教A版必修2.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线的两点式方程 直线 两点 方程 课件 优质 公开 课人教 必修
- 资源描述:
-
1、直线的直线的两点式方程两点式方程 y=kx+b y-y0=k(x-x0)k为斜率,为斜率,P0(x0,y0)为直线上的一定点为直线上的一定点 k为斜率,为斜率,b为截距为截距1).).直线的点斜式方程:直线的点斜式方程:2).).直线的斜截式方程:直线的斜截式方程:一、复习一、复习 解:设直线方程为:解:设直线方程为:y=kx+b例例1.已知直线经过已知直线经过P1(1,3)和和P2(2,4)两点,两点,求直线的方程求直线的方程一般做法:一般做法:342kbkb 由已知得:由已知得:12kb解方程组得:解方程组得:所以所以:直线方程为直线方程为:y=x+2方程思想方程思想 举例举例 由斜率的公
2、式得到斜率由斜率的公式得到斜率再有直线的点斜式方程再有直线的点斜式方程化简可得化简可得还有其他做法吗?还有其他做法吗?为什么可以这样做,这样做的为什么可以这样做,这样做的根据是什么?根据是什么?20 xy4321k 433121y(x)123413 xy即:即:得得:y=x+2 设设P(x,y)为直线上不同于为直线上不同于P1,P2的的动点,与动点,与P1(1,3)P2(2,4)在同一直线上,在同一直线上,根据斜率相等可得:根据斜率相等可得:211ppppkk 二、直线的两点式方程二、直线的两点式方程 已知两点已知两点P1(x1,y1),P2(x2,y2),求,求通过这两点的直线方程通过这两点
3、的直线方程解:设点解:设点P(x,y)是直线上不同于是直线上不同于P1,P2的的点点211121xyyxyyxx 可得直线的两点式方程:可得直线的两点式方程:211121yyxxyyxx kPP1=kP1P2记忆特点:记忆特点:1.左边全为左边全为y,右边全为,右边全为x2.两边的分母全为常数两边的分母全为常数 3.分子,分母中的减数相同分子,分母中的减数相同 推广推广 不是!不是!121121yyyyxxxx 是不是已知任一直线中的两点就能用两点是不是已知任一直线中的两点就能用两点式式 写出直线方程呢?写出直线方程呢?两点式不能表示平行于坐标轴或与坐两点式不能表示平行于坐标轴或与坐标轴重合的
4、直线标轴重合的直线注意:注意:当当x1 x2或或y1=y2时,直线时,直线P1 P2没有两点式没有两点式程程.(.(因为因为x1 x2或或y1=y2时,两点式的分母为零,没时,两点式的分母为零,没有意义有意义)那么两点式不能用来表示哪些直线的方程呢?那么两点式不能用来表示哪些直线的方程呢?三、直线的两点式方程的应用三、直线的两点式方程的应用 若点若点P1(x1,y1),P2(x2,y2)中有中有x1 x2,或,或y1=y2,此时过这两点的直线,此时过这两点的直线方程是什么?方程是什么?当当x1 x2 时方程为:时方程为:x x1 1当当 y1=y2时方程为:时方程为:y=y1 1 例例2:已知
5、直线已知直线 l 与与x轴的交点为轴的交点为A(a,0),与,与y轴的交点为轴的交点为B(0,b),其中,其中a0,b0,求直线,求直线l 的方程的方程解解:将两点将两点A(a,0),B(0,b)的坐标代入两点的坐标代入两点式,式,得得:0,00yxaba 1.xyab即即所以直线所以直线l 的方程为:的方程为:1.xyab 四、直线的截距式方程四、直线的截距式方程截距可是正数,负数和零截距可是正数,负数和零 注意注意:不能表示过原点或与坐标轴平行或重合的直线不能表示过原点或与坐标轴平行或重合的直线 直线与直线与 x 轴的交点轴的交点(a,o)的横坐标的横坐标 a 叫做直线在叫做直线在 x 轴
6、上的截距轴上的截距 是不是任意一条直线都有其截距式方程呢?是不是任意一条直线都有其截距式方程呢?1.xyab截距式直线方程截距式直线方程:直线与直线与 y 轴的交点轴的交点(0,b)的纵坐标的纵坐标 b 叫做直线在叫做直线在 y 轴上的截距轴上的截距 过过(1,2)并且在两个坐标轴上的截并且在两个坐标轴上的截距相等的直线有几条?距相等的直线有几条?解解:两条两条例例3:那还有一条呢?那还有一条呢?y=2x(与与x轴和轴和y轴的截距都为轴的截距都为0)所以直线方程为:所以直线方程为:x+y-3=0a=3121aa把把(1,2)代入得:代入得:1xyaa设设:直线的方程为直线的方程为:举例举例 解
7、:解:三条三条 (2)过过(1,2)并且在两个坐标轴上的截距并且在两个坐标轴上的截距的绝对值相等的直线有几条?的绝对值相等的直线有几条?解得:解得:a=b=3或或a=-b=-1直线方程为:直线方程为:y+x-3=0、y-x-1=0或或y=2x1xyabab 设设截距可是正数,负数和零截距可是正数,负数和零 例例4:已知角形的三个顶点是已知角形的三个顶点是A(5,0),B(3,3),C(0,2),求,求BC边所在的直线边所在的直线方程,以及该边上中线的直线方程方程,以及该边上中线的直线方程.解:过解:过B(3,-3),C(0,2)两点式方程为:两点式方程为:203230yx 整理得:整理得:5x
8、+3y-6=0这就是这就是BC边所在直线的方程边所在直线的方程.举例举例 1212,22xxyyxy BC边上的中线是顶点边上的中线是顶点A与与BC边中点边中点M所连所连线段,由中点坐标公式可得点线段,由中点坐标公式可得点M的坐标为:的坐标为:31,22M 即即整理得:整理得:x+13y+5=0这就是这就是BC边上中线所在的直线的方程边上中线所在的直线的方程.05130522yx 过过A(-(-5,0),M 的直线方程的直线方程31,22 M中点坐标公式:中点坐标公式:则则121222xxxyyy 若若P1,P2坐标分别为坐标分别为(x1,y1),(x2,y2)且中点且中点M的坐标为的坐标为(
展开阅读全文