《正弦函数余弦函数的性质》课件2优质公开课人教A版必修4.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《正弦函数余弦函数的性质》课件2优质公开课人教A版必修4.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正弦函数余弦函数的性质 正弦 函数 余弦 性质 课件 优质 公开 课人教 必修
- 资源描述:
-
1、正弦函数余弦函数的性质正弦函数余弦函数的性质1.1.周期性(复习)周期性(复习)(1)sinyx 2T sin()yAx2|T (2)cosyx 2T cos()yAx2|T 定义域和值域定义域和值域x22322523yO23225311x22322523yO23225311正弦函数正弦函数sinyx 定义域:定义域:R值域:值域:-1,1余弦函数余弦函数cosyx 定义域:定义域:R值域:值域:-1,1|sin|1|cos|1xx2.2.奇偶性奇偶性(1)()sin,f xx xRxR 任意任意()sin()fxxsin x ()f x ()sin,f xx xR为为奇奇函数函数(2)()c
2、os,f xx xRxR 任意任意()cos()fxxcos x()f x()cos,f xx xR为为偶偶函数函数正弦函数的图象正弦函数的图象探究探究余弦函数的图象余弦函数的图象x22322523yO23225311x22322523yO232253112.2.奇偶性奇偶性1、_,则,则f(x)在这个区间上是在这个区间上是增增函数函数.)()(21xfxf3.3.正弦余弦函数的单调性正弦余弦函数的单调性函数函数(),yf x若在指定区间任取若在指定区间任取 ,12x x、且且 ,都有:,都有:21xx函数的单调性反映了函数在一个区间上的走向。函数的单调性反映了函数在一个区间上的走向。观察正余
3、弦函数的图象,探究其单调性观察正余弦函数的图象,探究其单调性2、_,则,则f(x)在这个区间上是在这个区间上是减减函数函数.)()(21xfxf增函数:上升增函数:上升减函数:下降减函数:下降探究:正弦函数的单调性探究:正弦函数的单调性25232223,25,、,、当当 在区间在区间上时,上时,x曲线逐渐上升,曲线逐渐上升,sin的值由的值由 增大到增大到 。11753357,22222 222、,、,、当当 在区间在区间x上时,曲线逐渐下降,上时,曲线逐渐下降,sin的值由的值由 减小到减小到 。11x22322523yO23225311探究:正弦函数的单调性探究:正弦函数的单调性x2232
4、2523yO23225311正弦函数在每个闭区间正弦函数在每个闭区间)(22,22Zkkk都是增函数,其值从都是增函数,其值从1增大到增大到1;而在每个闭区间而在每个闭区间32,2()22kkkZ上都是上都是减函数,其值从减函数,其值从1减小到减小到1。探究:余弦函数的单调性探究:余弦函数的单调性 3,2 0 2 3,4、,、,当当 在区间在区间x上时,上时,曲线逐渐上升,曲线逐渐上升,cos的值由的值由 增大到增大到 。11曲线逐渐下降,曲线逐渐下降,sin的值由的值由 减小到减小到 。11 2,0 23 、,、,当当 在区间在区间x上时,上时,x22322523yO23225311探究:余
5、弦函数的单调性探究:余弦函数的单调性x22322523yO23225311由余弦函数的周期性知:由余弦函数的周期性知:其值从其值从1减小到减小到1。而在每个闭区间而在每个闭区间上都是减函数,上都是减函数,2,2kk 其值从其值从1增大到增大到1;在每个闭区间在每个闭区间2,2kk都是都是增函数增函数,探究:正弦函数的最大值和最小值探究:正弦函数的最大值和最小值最大值:最大值:2x当当 时,时,有最大值有最大值1yk2最小值:最小值:2x当当 时,时,有最小值有最小值1yk2x22322523yO23225311探究:余弦函数的最大值和最小值探究:余弦函数的最大值和最小值最大值:最大值:0 x当
展开阅读全文