大学物理上第2章2动量角动量守恒定律课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《大学物理上第2章2动量角动量守恒定律课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学物理 动量 角动量守恒定律 课件
- 资源描述:
-
1、2-2-2 动量定理动量定理2-2-1 动量动量2-2-3 动量守恒定律动量守恒定律2-2-4 火箭飞行原理火箭飞行原理2-1 牛顿定律牛顿定律2-2 动量守恒定律动量守恒定律2-3 角动量守恒定律角动量守恒定律2-5 守恒定律和对称性守恒定律和对称性2-2-5 质心与质心运动定理质心与质心运动定理2-2-1 动量车辆车辆超载超载容易容易引发交通事故引发交通事故车辆车辆超速超速容易容易引发交通事故引发交通事故动量动量(Momentum):运动质点的质量与运动质点的质量与速度的乘积。速度的乘积。vmp 单位:单位:kgms-1由由n个质点所构成的质点系的动量:个质点所构成的质点系的动量:in1i
2、in1iivmpp2-2-2 动量定理1质点的动量定理质点的动量定理冲量:冲量:作用力与作用时间的乘积作用力与作用时间的乘积 恒力的冲量:恒力的冲量:)(12ttFI单位:单位:Ns 变力的冲量:变力的冲量:21d)(ttttFI牛顿运动定律:牛顿运动定律:amFdtpdtmFd)(dv动量定理的微分式:动量定理的微分式:tFpdd如果力的作用时间从如果力的作用时间从 ,质点动量从,质点动量从 tt 0pp0ttppootFpdd00dvvmmpptFItto动量定理的积分式:动量定理的积分式:平均力的冲量:平均力的冲量:质点动量定理:质点动量定理:质点在运动过程中,所受合外力的质点在运动过程
3、中,所受合外力的冲量等于质点动量的增量。冲量等于质点动量的增量。00dvvmmpptFItto说明:说明:(1 1)冲量的方向冲量的方向 与动量增量与动量增量 的方向一致。的方向一致。Ip动量定理中的动量和冲量都是矢量,符合矢动量定理中的动量和冲量都是矢量,符合矢量叠加原理。因此在计算时可采用平行四边量叠加原理。因此在计算时可采用平行四边形法则。或把动量和冲量投影在坐标轴上以形法则。或把动量和冲量投影在坐标轴上以分量形式进行计算。分量形式进行计算。(2 2)ttzozzzttyoyyyxoxttxxooommtFImmtFImmtFIvvvvvvddd平均冲力:平均冲力:ttotFttFd10
4、 tFttFI结论:结论:物体动量变化一定的情况下,作用时间越长,物体动量变化一定的情况下,作用时间越长,物体受到的平均冲力越小;反之则越大。物体受到的平均冲力越小;反之则越大。海绵垫子可以延长运动员下落时与其接触的时间,这样就减小了地面对人的冲击力。例例1:如图所示,质量如图所示,质量 m、以速率、以速率 v 作匀速率圆周运动作匀速率圆周运动的的小球小球,求,求1/4周期内向心力对小球的冲量?周期内向心力对小球的冲量?/220(cos sin )mvIf dtij dtr 21IpPP 法法1:根据动量定理:根据动量定理法法2:根据冲量的定义:根据冲量的定义22mvf=rr向心力:mv jm
5、vi2(cos sin)i=jmvr/2/200(sin|cos|)Imvijd()Imv ij()Imv ij 例例 2 质量质量m=140g的垒球以速率的垒球以速率 v=40m/s沿水沿水平方向飞向击球手,被击后以相同速率沿仰平方向飞向击球手,被击后以相同速率沿仰角角 60o飞出。求棒对垒球的平均打击力。设棒飞出。求棒对垒球的平均打击力。设棒和球的接触时间为和球的接触时间为 t=1.2 ms。60ov2v1 因打击力很大,所以由碰撞引起的质点的动因打击力很大,所以由碰撞引起的质点的动量改变,基本上由打击力的冲量决定。量改变,基本上由打击力的冲量决定。mv160omv2mg t打击力冲量打击
6、力冲量12vmvmtF 重力、阻重力、阻力的冲量可以忽略。力的冲量可以忽略。F t F t合力冲量合力冲量)(101.8102.130cos4014.0230cos233N tmvF平均打击力约为垒球自重的平均打击力约为垒球自重的5900倍!倍!在碰撞过在碰撞过程中,物体之间的碰撞冲力是很大的。程中,物体之间的碰撞冲力是很大的。12vmvmtF F tmv160omv230om=140gvvv 122质点系的动量定理质点系的动量定理设设有有 n 个质点构成一个系统个质点构成一个系统第第 i 个质点:个质点:外力外力iF内力内力if初速度初速度iov末速度末速度iv质量质量im由质点动量定理:由
7、质点动量定理:ioiiittiimmtfFovvdiFifF1f12m1m2f21F2 ioiiittiimmtfFovvd 0if其中:其中:系统总末动量:系统总末动量:iimPv系统总初动量:系统总初动量:ioimPv0合外力的冲量:合外力的冲量:ttitF0dPPPtFtti 00d微分式:微分式:tPFidd质点系统所受合外力的冲量等于系统总动量的增量。质点系统所受合外力的冲量等于系统总动量的增量。注意:注意:系统的内力不能改变整个系统的总动量。系统的内力不能改变整个系统的总动量。例例1、质量质量m=1kg的质点从的质点从o点开始沿半径点开始沿半径R=2m的的圆周运动。以圆周运动。以o
8、点为自然坐标原点。已知质点的运动点为自然坐标原点。已知质点的运动方程为方程为 m。试求从。试求从 s到到 s这段时这段时间内质点所受合外力的冲量。间内质点所受合外力的冲量。25.0ts21t22t解:解:o21221s211Rs222122sRs22ttsddv)(211smv)(212smv)smkg(211vm)smkg(212vm)(12vvvmmmI)smkg(6421222221vvvmmm)(69.761smkgI22tan12vvmm44541vm2vm)(vm例例5.一颗子弹在枪筒里前进时所受的合力大小为一颗子弹在枪筒里前进时所受的合力大小为F=400-4 105 t/3,子弹
9、从枪口射出时的速率为,子弹从枪口射出时的速率为300 m/s。设子弹离开枪口处合力刚好为零。求:(设子弹离开枪口处合力刚好为零。求:(1)子弹走)子弹走完枪筒全长所用的时间完枪筒全长所用的时间t。(。(2)子弹在枪筒中所受力)子弹在枪筒中所受力的冲量的冲量I。(。(3)子弹的质量。)子弹的质量。(1)031044005tFs003.010440035t(2)sN6.032104400d3104400d003.0025003.005tttttFI(3)0vmIg2kg002.03006.0vIm设设 t 时刻有长为时刻有长为 l-y 的绳子落到地面上,则该段的绳子落到地面上,则该段绳子对地面的重
10、力为绳子对地面的重力为jylgG)(考虑考虑dm段绳子与地面作用的情况:段绳子与地面作用的情况:)(0vdmNdt)(22ylgvvdtdyvdtdmN 例例:一柔软绳长:一柔软绳长 l,线密度,线密度 ,一端着地开始自由下落,一端着地开始自由下落,下落的任意时刻,给地面的压力等于已落下绳子的重量的下落的任意时刻,给地面的压力等于已落下绳子的重量的3 3倍。倍。lyY解:解:选地面为参照系,坐标系如图选地面为参照系,坐标系如图2()NNg ly j 3()3NGg ly jG 绳子对地面的压力为:00dPPtFtti 0iF0PP系统所受合外力为零时,系统的总动量保持不变。系统所受合外力为零时
11、,系统的总动量保持不变。常矢量iimPv条件:条件:0iF说明:(1 1)系统的总动量守恒并不意味着系统内各个)系统的总动量守恒并不意味着系统内各个质点的动量不变,而是指系统动量总和不变。质点的动量不变,而是指系统动量总和不变。(2 2)当外力作用远小于内力作用时,可近似认)当外力作用远小于内力作用时,可近似认为系统的总动量守恒。(如:碰撞,打击等)为系统的总动量守恒。(如:碰撞,打击等)动量守恒的分量式:动量守恒的分量式:常量常量常量iziziyiyixixmPmPmPvvv 动量守恒定律是物理学中最重要、最普遍的规律之一,它不仅适合宏观物体,同样也适合微观领域。例例3、火箭以火箭以2.5
12、103m/s的速率水平飞行,由控制器的速率水平飞行,由控制器使火箭分离。头部仓使火箭分离。头部仓m1=100kg,相对于火箭的平均相对于火箭的平均速率为速率为103 m/s。火箭容器仓质量火箭容器仓质量m2=200kg。求容器求容器仓和头部仓相对于地面的速率。仓和头部仓相对于地面的速率。解:解:v=2.5103 m/svr=103 m/s 头部仓速率为头部仓速率为v1 1,容器仓速率为,容器仓速率为v2 2 21vvvr2221221121)()(vvvvvvmmmmmmr132112sm1017.2mmmrvvv1321sm1017.3rvvv例例4.宇宙飞船在宇宙尘埃中飞行宇宙飞船在宇宙尘
13、埃中飞行,尘埃密度为尘埃密度为。如。如果质量为果质量为mo的飞船以初速的飞船以初速vo穿过尘埃穿过尘埃,由于尘埃粘在由于尘埃粘在飞船上,致使飞船速度发生变化。求飞船的速度与其飞船上,致使飞船速度发生变化。求飞船的速度与其在尘埃中飞行的时间的关系。(设飞船为横截面面积在尘埃中飞行的时间的关系。(设飞船为横截面面积为为S的圆柱体)的圆柱体)某时刻飞船速度:某时刻飞船速度:v,质量:,质量:m动量守恒:动量守恒:vvmm00质量增量:质量增量:tSmddvvv00mm tSmmddd200vvvvmvttmSo0003ddvvvvvtmS00202)11(21vvv00002vvvmtSmtmSdd
14、003vvvvvdu设:设:t 时刻:火箭的质量为时刻:火箭的质量为M,速度为速度为v;t+dt 时刻:时刻:火箭的质量为火箭的质量为M+dM 速度为速度为v+dv 喷出气体的质量为喷出气体的质量为-dM 相对于火箭的速度为相对于火箭的速度为urruMMMMvv-v)(vvdddd略去二阶无穷小量略去二阶无穷小量 vddMMMurddv设:设:初始初始00v火箭总质量火箭总质量 M0 ,壳体本身的质量为壳体本身的质量为M1,燃料耗尽时火箭的速度为,燃料耗尽时火箭的速度为 v10ddMMrMMuvv010lnMMurv10MM为质量比为质量比多级火箭:多级火箭:一级火箭速率:一级火箭速率:1ln
15、Nur1v设各级火箭的质量比分别为设各级火箭的质量比分别为N1、N2、N3、二级火箭速率:二级火箭速率:212lnNur vv323ln Nur vv三级火箭速率:三级火箭速率:三级火箭所能达到的速率为:三级火箭所能达到的速率为:)ln()lnln(ln3213213NNNuNNNurrv设,设,N1=N2=N3=313sm105.2ru得得13133sm102.83ln3sm105.2v这个速率已超过了第一宇宙速度。这个速率已超过了第一宇宙速度。1质心质心imO1m2mxyzCCr1rir2rnnncmmmrmrmrmr212211Mrmiicr设由设由n个质点构成一质点系个质点构成一质点系
16、 质量:质量:m1、m2、mn,位矢:位矢:、1r2rnriiicmxmxiiicmymyiiicmzmzmmxxcddmmyycddmmzzcdd对于密度均匀,形状对称的物体,其质对于密度均匀,形状对称的物体,其质心都在它的几何中心。心都在它的几何中心。2质心运动定理质心运动定理iicrmrM质心位置公式:trmtrMiicddddiicmMvv质点系的总动量等于总质量与其质心运质点系的总动量等于总质量与其质心运动速度的乘积。动速度的乘积。由质点系动量定理的微分式可得:由质点系动量定理的微分式可得:tMtmmttPFciiiiiddddddddvvvciaMF 作用于质点系上的合外力等于质点
展开阅读全文