第三章控制系统的时域分析法课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第三章控制系统的时域分析法课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第三 控制系统 时域 分析 课件
- 资源描述:
-
1、第三章第三章 控制系统的时域分析控制系统的时域分析法法 第三章第三章 控制系统的时域分析法控制系统的时域分析法 第一节 二阶系统的瞬态响应及性能指标 第二节 增加零极点对二阶系统响应的影响第三节 反馈控制系统的稳态误差第四节 劳斯-霍尔维茨稳定性判据第五节 控制系统灵敏度分析第六节 应用MATLAB分析控制系统的性能第七节 设计实例 第一节第一节 二阶系统的瞬态响应及性能指标二阶系统的瞬态响应及性能指标 瞬态响应,是指系统的输出从输入信号r(t)作用时刻起,到稳定状态为止,随时间变化的过程。分析系统的瞬态响应,可以考查系统的稳定性和过渡过程的性能。分析系统的瞬态响应,有以下方法:1.直接求解法
2、 2.间接评价法 3.计算机仿真法 本小节首先讨论典型输入信号、性能指标等内容,然后讨论一阶、二阶系统的瞬态响应,最后讨论如何处理高阶系统的瞬态响应问题。一、一、典型输入信号典型输入信号(一)阶跃信号(一)阶跃信号 阶跃信号的表达式为:(3.1)当A=1时,则称为单位阶跃信号,常用1(t)表示,如图3-1所示。图3-1 阶跃信号 图3-2 斜坡信号 000ttAtr )((二)斜坡信号(二)斜坡信号 斜坡信号在t=0时为零,并随时间线性增加,所以也叫等 速度信号。它等于阶跃信号对时间的积分,而它对时间的导数就是阶跃信号。斜坡信号的表达式为:(3.2)0 00ttAttr )((三)抛物线信号三
3、)抛物线信号 抛物线信号也叫等加速度信号,它可以通过对斜坡信号的积分而得。抛物线信号的表达式为:(3.3)当A=1时,则称为单位抛物线信号,如图3-3所示 0 00 )(ttAttr221(四)脉冲信号(四)脉冲信号 单位脉冲信号的表达式为:(3.4)其图形如图3-4所示。是一宽度为e,高度为1e 的矩形脉冲,当e 趋于零时就得理想的单位脉冲信号(亦称d(t)函数)。(3.5)eeettttr及000 1)(1d)(ttd(五)正弦信号(五)正弦信号 正弦信号的表达式为:(3.6)其中A为幅值,w=2p/T为角频率。图3-5 正弦信号 0 00tttAtr sin)(w二、二、系统的性能指标系
4、统的性能指标系统的瞬态性能通常以系统在初始条件为零的情况下,对单位阶跃输入信号的响应特性来衡量,如图3-6所示。这时瞬态响应的性能指标有:1 1。最大超调量sp响应曲线偏离稳态值的最大值,常以百分比表示,即 最大百分比超调量sp最大超调量说明系统的相对稳定性。2。延滞时间td响应曲线到达稳态值50%所需的时间,称为延滞时间。%)()()(100cctcp3.上升时间tr它有几种定义:(1)响应曲线从稳态值的10%到90%所需时间;(2)响应曲线从稳态值的5%到95%所需时间;(3)响应曲线从零开始至第一次到达稳态值所需的时间。一般对有振荡的系统常用“(3)”,对无振荡的系统常用“(1)”。4.
5、峰值时间tp响应曲线到达第一个峰值所需的时间,定义为峰值时间。5.调整时间ts响应曲线从零开始到进入稳态值的95%105%(或98%102%)误差带时所需要的时间,定义为调整时间。图图3-6 单位阶跃响应单位阶跃响应 对于恒值控制系统,它的主要任务是维持恒值输出,扰动输入为主要输入,所以常以系统对单位扰动输入信号时的响应特性来衡量瞬态性能。这时参考输入不变、输出的希望值不变,响应曲线围绕原来工作状态上下波动,如图3-7所示。可用一阶微分方程描述其动态过程的系统,称为一阶系统。考虑如图3-8所示的一阶系统,它代表一个电机的速度控制系统,其中t 是电机的时间常数。该一阶系统的闭环传递函数为 (3.
6、7)三、瞬态响应分析三、瞬态响应分析 (一)一阶系统的瞬态响应图3-8 一阶控制系统/)1(/1)()()(KsKKsKsRsCsGB 当系统输入为单位阶跃信号时,即r(t)=1(t)或R(s)=1/s,输出响应的拉氏变换为 (3.8)取C(s)的拉氏反变换,可得一阶系统的单位阶跃响应为 (3.9)系统响应如图3-9所示。从图中看出,响应的稳态值为 (3.10)/)1()1/()1/(1/)1(/)(KsKKsKKsKsKsC/)1(11)(tKeKKKKtc1)(KKc图3-9 一阶系统的单位阶跃响应 若增加放大器增益K,可使稳态值近似为1。实际上,由于放大器的内部噪声随增益的增加而增大,K
7、不可能为无穷大。而且,线性模型也仅在工作点附近的一定范围内成立。所以,系统的稳态误差 (3.11)不可能为零。系统的时间常数为 (3.12)它可定义为系统响应达到稳态值的63.2%所需要的时间。11)(1)()(lim)(lim)(Kctctrteett1KT由式(3.9),很容易找到系统输出值与时间常数T的对应关系:从中可以看出,响应曲线在经过3T(5%误差)或4T(2%误差)的时间后进入稳态。t=T,c(1T)=0.632 c()t=2T,c(2T)=0.865c()t=3T,c(3T)=0.950c()t=4T,c(4T)=0.982c()如果系统响应曲线以初始速率继续增加,如图3-9中
8、 的c1(t)所示,T还可定义为c1(t)曲线达到稳态值所需要 的时间。KeKttcttKt0/)1(0d)(d (3.13)因此tKtc)(1当t=T时,c1(t)曲线到达稳态值,即1)(1KKTKTc,所以1KT(二)二阶系统的阶跃响应(二)二阶系统的阶跃响应 在工程实际中,三阶或三阶以以上的系统,常可以近似或降阶为二阶系统处理。图3-10是典型二阶系统的结构图,它的闭环传递函数为2222nnnBsssGwww)(由上式可看出,和wn是决定 二阶系统动态特性的两个非常重 要参数,其中 称为阻尼比,wn称为无阻尼自然振荡频率.图3-10 二阶系统 例如图2-2中R-电路,其传递函数为 式中,
展开阅读全文