小升初数学典型应用题27抽屉原则问题.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《小升初数学典型应用题27抽屉原则问题.docx》由用户(现有分享)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小升初 数学 典型 应用题 27 抽屉 原则 问题 下载 _小升初复习资料_小升初专区_数学_小学
- 资源描述:
-
1、27 抽屉原则问题【含义】把 3 只苹果放进两个抽屉中,会出现哪些结果呢?要么把 2 只苹果放进一个抽屉,剩下的一个放进另一个抽屉;要么把 3 只苹果都放进同一个抽屉中。这两种情况可用一句话表示:一定有一个抽屉中放了 2 只或 2 只以上的苹果。这就是数学中的抽屉原则问题。【数量关系】基本的抽屉原则是:如果把 n1 个物体(也叫元素)放到 n个抽屉中,那么至少有一个抽屉中放着 2 个或更多的物体(元素)。抽屉原则可以推广为:如果有 m 个抽屉,有 kmr(0rm)个元素那么至少有一个抽屉中要放(k1)个或更多的元素。通俗地说,如果元素的个数是抽屉个数的 k 倍多一些,那么至少有一个抽屉要放(k
2、1)个或更多的元素。【解题思路和方法】(1)改造抽屉,指出元素;(2)把元素放入(或取出)抽屉;(3)说明理由,得出结论。例 1育才小学有 367 个 2000 年出生的学生,那么其中至少有几个学生的生日是同一天的?解由于 2000 年是润年,全年共有 366 天,可以看作 366 个“抽屉”,把367 个 1999 年出生的学生看作 367 个“元素”。367 个“元素”放进 366 个“抽屉”中,至少有一个“抽屉”中放有 2 个或更多的“元素”。这说明至少有 2 个学生的生日是同一天的。例 2据说人的头发不超过 20 万跟,如果陕西省有 3645 万人,根据这些数据,你知道陕西省至少有多少
3、人头发根数一样多吗?- 1 - 解人的头发不超过 20 万根,可看作 20 万个“抽屉”,3645 万人可看作3645 万个“元素”,把 3645 万个“元素”放到 20 万个“抽屉”中,得到3645201825 根据抽屉原则的推广规律,可知 k1183 答:陕西省至少有 183 人的头发根数一样多。例 3 一个袋子里有一些球,这些球仅只有颜色不同。其中红球 10 个,白球9 个,黄球 8 个,蓝球 2 个。某人闭着眼睛从中取出若干个,试问他至少要取多少个球,才能保证至少有 4 个球颜色相同?解把四种颜色的球的总数(3332)11 看作 11 个“抽屉”,那么,至少要取(111)个球才能保证至少有 4 个球的颜色相同。答:他至少要取 12 个球才能保证至少有 4 个球的颜色相同。- 2 -
展开阅读全文