抽屉原理教学案例 抽屉原理教学设计9篇.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《抽屉原理教学案例 抽屉原理教学设计9篇.docx》由用户(一起向未来)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 抽屉原理教学案例 抽屉原理教学设计9篇 抽屉 原理 教学 案例 设计
- 资源描述:
-
1、抽屉原理教学案例 抽屉原理教学设计9篇 【教学内容】义务教育课程标准实验教科书、数学六年级下册。【教材分析】让学生初步了解简单“抽屉原理”,教材借助把4枝铅笔放进3个文具盒中的操作情景,介绍了较简单的“抽屉原理”,通过用“抽屉原理”解决简单的实际问题,初步感受数学的魅力。主要培养学生的思考和推理能力,让学生初步经历“数学原理”的过程,提高学生数学应用意识。【学情分析】教材借助把4枝铅笔放进3个文具盒中的操作情景,介绍了较简单的“抽屉原理”。学生在操作实物的过程中可以发现一个现象:不管怎么放,总有一个文具盒里至少放进2枝铅笔,从而产生疑问,激起寻求答案的欲望。为了解释这一现象,教材呈现了枚举。【
2、教学目标】1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。2.通过操作发展学生的类推能力,形成比较抽象的数学思维。3.通过“抽屉原理”的灵活应用感受数学的魅力。【教学重点】经历“抽屉原理”的探究过程,初步了解“抽屉原理”。【教学难点】理解“抽屉原理”,并对一些简单实际问题加以“模型化”。【教具、学具准备】每组都有3个文具盒和4枝铅笔。【教学过程】一、谈话导入教师:同学们,你们在电脑上玩过“电脑算命”吗?“电脑算命”看起来很深奥,只要报出你的出生的年、月、日和性别,一按键,屏幕上就会出现所谓性格、命运、财运等。通过今天的学习,我们掌握了“抽屉原理”之后,
3、你就不难证明这种“电脑算命”是非常可笑和荒唐的,是不能信的鬼把戏。板书:抽屉原理教师:通过学习,你想解决那些问题?根据学生回答,教师把学生提出的问题归结为:“抽屉原理”是怎样的?这里的“抽屉”是指什么?运用“抽屉原理”能解决那些问题?怎样运用“抽屉原理”解决实际问题?二、通过操作,探究新知(一)认识“抽屉原理”出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法?师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况(3,0)(2,1)师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。3支笔放进2个盒子里呢?
4、生:不管怎么放,总有一个盒子里至少有2枝笔?师:是这样吗?谁还有这样的发现,再说一说。师:那么,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?请同学们实际放放看。(师巡视,了解情况,个别指导)师:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况。(4,0,0)(3,1,0) (2,2,0)(2,1,1),师:还有不同的放法吗?生:没有了。师:你能发现什么?生:不管怎么放,总有一个盒子里至少有2枝铅笔。师:“总有”是什么意思?生:一定有师:“至少”有2枝什么意思?生:不少于两只,可能是2枝,也可能是多于2枝?师:就是不能少于2枝。(通过操作让学生充分体验感受)师:把3枝
5、笔放进2个盒子里,和把4枝笔饭放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢?学生思考-组内交流-汇报师:哪一组同学能把你们的想法汇报一下?组1生:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。师:你能结合操作给大家演示一遍吗?(学生操作演示)师:同学们自己说说看,同位之间边演示边说一说好吗?师:这种分法,实际就是先怎么分的?生众:平均分师:为什么要先平均分?(组织学生讨论)生1:要想发现存在着“总有一个盒子里一定至
6、少有2枝”,先平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。生2:这样分,只分一次就能确定总有一个盒子至少有几枝笔了?师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说)师:哪位同学能把你的想法汇报一下,生:(一边演示一边说)5枝铅笔放在4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。师:把6枝笔放进5个盒子里呢?还用摆吗?生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。师:把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?.你发现什么?生1:笔的枝数比盒子数多1,不管怎么放,总有一个盒子
7、里至少有2枝铅笔。师:你的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。(二)探究新知1.出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?(留给学生思考的空间,师巡视了解各种情况)2.学生汇报。生1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。板书:5本2个2本.余1本(总有一个抽屉里至有3本书)7本2个3本.余1本(总有一个抽屉里至有4本书)9本2个4本.余1本(
8、总有一个抽屉里至有5本书)师:2本、3本、4本是怎么得到的?生答完成除法算式。5divide;2=2本.1本(商加1)7divide;2=3本.1本(商加1)9divide;2=4本.1本(商加1)师:观察板书你能发现什么?生1:“总有一个抽屉里的至少有2本”只要用“商+1”就可以得到。师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?生:“总有一个抽屉里的至少有3本”只要用5divide;3=1本.2本,用“商+2”就可以了。生:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是
9、3本书。师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。交流、说理活动:生1:我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。生2:把5本书平均分放到3个抽屉里,每个抽屉里先放1本,余下的2本可以在2个抽屉里再各放1本,结论是“总有一个抽屉里至少有2本书”。生3我们组的结论是5本书平均分放到3个抽屉里,“总有一个抽屉里至少有2本书”用“商加1”就可以了,不是“商加2”。师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢?生4:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有
10、商加1本书”了。师:同学们同意吧?师:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。3.解决问题。71页第3题。(独立完成,交流反馈)小结:经过刚才的探索研究,我们经历了一个很不简单的思维过程,我们获得了解决这类问题的好办法,下面让我们轻松一下做个小游戏。三、应用原理解决问题师:我这里有一副扑克牌,去掉了两张王牌,还剩52
11、张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?生:2张/因为5divide;4=1.1师:先验证一下你们的猜测:举牌验证。师:如有3张同花色的,符合你们的猜测吗?师:如果9个人每一个人抽一张呢?生:至少有3张牌是同一花色,因为9divide;4=2.1四、全课小结上面我们所证明的数学原理就是最简单的“抽屉原理”,可以概括为:把m个物体任意放到m-1个抽屉里,那么总有一个抽屉中放进了至少2个物体。五、思维训练1.从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔.十二种生肖)相同。说明理由。2.任意36
12、7名学生中,一定存在两名学生,他们在同一天过生日。说明理由。【教学反思】1、小组活动很容易抓住学生的注意力,让学生觉得这节课要探究的问题即好玩又有意义。2、理解“抽屉原理”对于学生来说有着一定的难度。3、部分学生很难判断谁是物体,谁是抽屉。【知识技能】1.理解最简单的抽屉原理及抽屉原理的一般形式。2.引导学生采用操作的方法进行枚举及假设法探究。【过程方法】经历抽屉原理的探究过程,初步了解抽屉原理。【情感态度价值观】体会数学知识在日常生活中的广泛应用,培养学生的探究意识和能力。【教学重、难点】经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。【教学过程】一、问题引
13、入。师:同学们,你们玩过抢椅子的游戏吗?现在,老师这里准备了3把椅子,请4个同学上来,谁愿来?1.游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。2.讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。二、探究新知(一)教学例11.出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?师:请同学们实
14、际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师出示各种情况。板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1),问题:4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。4支笔放进3个盒子里呢?引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。问题:(1)“总有”是什么意思?(一定有)(2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,你们能不能找到一种更为直接的方法得到这个结论呢?学生思考并
15、进行组内交流,教师选代表进行总结:如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。问题:把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?.你发现什么?(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)教学目标:1.知识与能力目标:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规
16、律。渗透“建模”思想。2.过程与方法目标:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。3.情感、态度与价值观目标:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。教学准备:教具:5个杯子,6根小棒;学具:每组5个杯子,6根小棒。教学过程:一、游戏激趣,初步体验。师:同学们,你们玩过扑克牌吗?下面我们用扑克牌来玩个游戏。大家知道一副扑克牌有54张,如果去掉两张王牌,就剩52张,对吗?如果从这52张扑克牌
17、中任意抽取5张,我敢肯定地说:“张5张扑克牌至少有2张是同一种花色的,你们信吗?那就请5位同学上来各抽一张,我们来验证一下。如果再请五位同学来抽,我还敢这样肯定地说,你们相信吗?其实这里面蕴藏着一个非常有趣的数学原理,想不想研究啊?二、操作探究,发现规律。(一)经历“抽屉原理”的探究过程,理解原理。1.研究小棒数比杯子数多1的情况。师:今天这节课我们就用小棒和杯子来研究。板书:小棒杯子师:如果把3根小棒放在2个杯子里,该怎样放?有几种放法?学生分组操作,并把操作的结果记录下来。请一个小组汇报操作过程,教师在黑板上记录。师:观察这所有的摆法,你们发现总有一个杯子里至少有几根小棒?板书:总有一个杯
18、子里至少有。师:依此推想下去,4根小棒放在3个杯子里,又可以怎样放?大家再来摆摆看,看看又有什么发现?学生分组操作,并把操作的结果记录下来。请一个小组代表汇报操作过程,教师在黑板上记录。师:观察所有的摆法,你发现了什么?这里的“总有”是什么意思?“至少”又是什么意思?师:那如果把6根小棒放在5个杯子里,猜一猜,会有什么样的结果?师:怎样验证猜测的结果对不对,你又什么好方法?引导学生不再一一列举,用平均分的方法来找答案。并用算式表示分的结果:6divide;5=1.1师:那如果用这种方法,你知道把7根小棒放在6个杯子里,把10根小棒放在9个杯子里,把100根小棒放在99个杯子里,会有什么样的结果
19、呢?你又从中发现了什么规律呢?师:我们发现了小棒的数量比杯子的数量多1,总有一个杯子里至少有2根小棒。那如果小棒的数量比杯子的数量多2、多3,又会有什么样的结果呢?2、研究小棒数比杯子数多2、多3的情况。师:如果把5根小棒放在3个杯子里,会有什么结果?引导:先平均分,每个杯子里分得1根小棒,余下的2根小棒又该怎么分呢?师:把7根小棒放在3个杯子里,会有什么结果呢?为什么?3、研究小棒数比杯子数的2倍多、3倍多.等情况。师:如果把9根小棒放在4个杯子里,把15根小棒放在4个杯子里,分别又会有什么结果?小组内讨论,再请同学说结果和理由。4、总结规律。师:我们将小棒看做物体、把杯子看做抽屉,你发现了
20、什么规律?总结:把m个物体放在n个抽屉里(mn),总有一个抽屉至少有“商+1”个物体。5、介绍抽屉原理。“抽屉原理”又称“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。三、应用“抽屉原理”,感受数学的魅力。1、把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?为什么?先思考:这里是把什么看做物体?什么看做抽屉?再说结果和理由。2、8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?3、向东小学六年级
21、共有370名学生,其中六(2)班有49名学生。请问下面两人说的对吗?为什么?(1)六年级里至少有两人的生日是同一天。(2)六(2)班中至少有5人是同一个月出生的。4、张叔叔参加飞镖比赛,投了5镖,成绩是41环。张叔叔至少有一镖不低于9环。为什么?5、师:开课时我们做的游戏还记得吗?为什么老师可以肯定地说:从52张牌中任意抽取5张牌,至少会有2张牌是同一花色的?你能用所学的抽屉原理来解释吗?四、全课小结。说一说:今天这节课,我们又学习了什么新知识?(师生共同对本节课的内容进行小结)五、布置作业。课本73页练习十二第2、4题。六、板书设计。数学广角-抽屉原理物体数divide;抽屉数= 商.余数
22、至少数 =商+1小棒 杯子 总有一个杯子里至少有3 2 24 3 26 divide; 5 = 1.1 25 divide; 3 = 1.2 27 divide; 4 = 1.3 29 divide; 4 = 2.1 315 divide; 4 = 3.3 4教学反思:1、通过游戏,激发兴趣。兴趣是最好的老师。课前我设计了从52张扑克牌(去掉2张王牌)中任意抽取5张,老师肯定地说:至少有2张牌是同一花色的,在学生半信半疑时,师生共同游戏,让学生信服,但又不知道其中奥妙,这样导入,学生兴趣盎然。2、操作探究,建立模型。本节课充分放手,让学生自主思考,采用自己的方法“证明”:“把4根小棒放入3个杯
展开阅读全文