电子科大课堂讲义课堂版信号第四章讲义课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《电子科大课堂讲义课堂版信号第四章讲义课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电子科 课堂 讲义 信号 第四 课件
- 资源描述:
-
1、Chapter 4The Continuous-Time Fourier Transform Chapter 4 Fourier Transform jtXjx t edt factor Synthesis equationAnalysis equationFourier Transform Pair tx jXSpectrum(频谱)(频谱)of jXtxF4.1 Representation of Aperiodic Signals:The Continuous-Time Fourier Transform 1 2jtx tXjed 0110 jkXTjXTakkThe Fourier c
2、oefficients of are proportional to samples of the Fourier transform of one period of ka tx txConsider a periodic signal txTtxDefining others 0 00Tttttxtx Chapter 4 Fourier Transform Chapter 4 Fourier Transform4.1.3 Fourier Transforms of Typical Signals 11.Fateu taj 2222.0a tFaeaa 1 0 WXjW F sinWtx t
3、t 112sinTcT 11 1 t 3.0 t Tx tTF 4.1 12FFt Chapter 4 Fourier Transform F25.sgn tj 16.Fu tj 007.2jtFe 4.2 The Fourier Transforms for Periodic Signalstjtjeet0021cos0 tjtjeejt0021sin0 00F0cos t0000F0sin jjtj00j Chapter 4 Fourier TransformMore generally TtxTtx/2 0 tjkkeatx0 02 kajXkkPeriodic square wave
4、kTkak10sin010sin2 kkTkjXk Chapter 4 Fourier TransformTak1TkTjXk 22T2 -0 0 0 20jX00jXPeriodic impulses train kTttxk Chapter 4 Fourier Transform Chapter 4 Fourier Transform4.3 Properties of the Fourier Transforms 4.3.1 Linearity FF x tXjy tYj Fax tby taXjbYj Chapter 4 Fourier Transform4.3.2 Time Shift
5、ing Fx tXj 0 F0jtx ttXje Example 4.90 1 2 3 4 t 2/31 tx Chapter 4 Fourier Transform-2 -1 0 1 2 t 11 txExample4.3.3 Conjugation and Conjugate Symmetry F1.xtXj x txtXjXj Chapter 4 Fourier Transform 2.xtx tXjXjreal even txreal even jXreal odd txPurely imaginary odd jX x tEv x tOd x tReImFXjjXj FReEv x
6、tXj FImOd x tjXj Chapter 4 Fourier Transform nnFnd x tjXjdt 4.3.4 Differentiation and Integration1.Differentiation Fdx tjXjdt Chapter 4 Fourier Transform2.Integration 10tFxdXXjj 22F2d x tjXjdt dttdx-2 0 2 t1-1 22dttxd-2 0 2 t(1)(-2)(1)2222jjeeXj 2022 txtExample F22jte F22jte F22t 224sin Chapter 4 Fo
7、urier Transform4.3.5 Time and Frequency ScalingF1jx atXaa FxtXj Let 1a Chapter 4 Fourier TransformExample Fx tXj F62?xt F66jxtXje F66jxtXje F3162/22jxtXje Fx tXj F2Xjtx 12jtx tXjed 2jtxtXjed 交换交换 ,t 2jtxXjt edt 4.3.6 Duality(对偶性)(对偶性)Example 1Ft 122F Chapter 4 Fourier Transform12sinT 11 1 t 0 t Tx t
8、TF12sin T ttF11 2 2 0 TxT 0 1 WWjX F tWttx sinExample 4.13?12F2 jXttx222a tFaea 221tFe 2221Fet Chapter 4 Fourier TransformExample 4.14?1F jXttx F2sgn tj F22 sgnjt F1sgnjt 4.3.7 Differentiation in Frequency Domain FdXjjtx td Fx tXj F221sgnjt F21t Chapter 4 Fourier TransformExample 1 21 F 2Fjt jtF2 jj
9、tF22 222jtFMore generally nnFnjt2 jt2sgnF 2F2sgn jtjt2F2 t Chapter 4 Fourier TransformExample 2-2 -1 0 1 2 t jX1-2 -1 0 1 2 t 11djdX111122djXd-2 -1 0 1 2 t jXtxF?112222 djXd00F0cos tttcos12cos1 txjt2 ttttx2coscos12 Chapter 4 Fourier TransformExample 3 0 1 ajatueFat 2 jajtujteFat 0 12ajatuteFat 3F22
展开阅读全文