生活中的优化问题举例(人教A版选修22)课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《生活中的优化问题举例(人教A版选修22)课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 生活 中的 优化 问题 举例 人教 选修 22 课件
- 资源描述:
-
1、1.4生活中的优化问题举例问题背景:问题背景:饮料瓶大小对饮料公司利润的影响饮料瓶大小对饮料公司利润的影响 下面是某品牌饮料的三种规格不同的产品,若它们下面是某品牌饮料的三种规格不同的产品,若它们的价格如下表所示,则的价格如下表所示,则(1)对消费者而言,选择哪一种更合算呢?)对消费者而言,选择哪一种更合算呢?(2)对制造商而言,哪一种的利润更大?)对制造商而言,哪一种的利润更大?例例1 1、某制造商制造并出售球形瓶装的某种饮料,瓶子的制造、某制造商制造并出售球形瓶装的某种饮料,瓶子的制造成本是成本是0.8p0.8pr r2 2分,其中分,其中r r是瓶子的半径,单位是厘米,已知在不是瓶子的半
2、径,单位是厘米,已知在不考虑瓶子的成本的前提下,每出售考虑瓶子的成本的前提下,每出售1 1mlml的饮料,制造商可获利的饮料,制造商可获利0.20.2分,且制造商能制造的瓶子的最大半径为分,且制造商能制造的瓶子的最大半径为6cm6cm,则每瓶饮料,则每瓶饮料的利润何时最大,何时最小呢?的利润何时最大,何时最小呢?2()=0.8-20=2(),f rrrr 令令得得-+减函数减函数 增函数增函数 解:解:每个瓶的容积为每个瓶的容积为:)(343mlr 每瓶饮料的利润:每瓶饮料的利润:238.0342.0)(rrrfy 32=0.8(-)3rr)60(r)(343mlr 极小值极小值例例1、某制造
3、商制造并出售球形瓶装的某种饮料,瓶子的制造、某制造商制造并出售球形瓶装的某种饮料,瓶子的制造成本是成本是0.8 r2分,其中分,其中r是瓶子的半径,单位是厘米,已知在不是瓶子的半径,单位是厘米,已知在不考虑瓶子的成本的前提下,每出售考虑瓶子的成本的前提下,每出售1ml的饮料,制造商可获利的饮料,制造商可获利0.2分,且制造商能制造的瓶子的最大半径为分,且制造商能制造的瓶子的最大半径为6cm,则每瓶饮料,则每瓶饮料的利润何时最大,何时最小呢?的利润何时最大,何时最小呢?解:设每瓶饮料的利润为解:设每瓶饮料的利润为y,则,则238.0342.0)(rrr fy 32=0.8(-)3rr)60(r-
4、+减函数减函数 增函数增函数 f(r)在在(0,6上只有一个极值点上只有一个极值点由上表可知,当由上表可知,当r=2时,利润最小时,利润最小极小值极小值解:设每瓶饮料的利润为解:设每瓶饮料的利润为y,则,则238.0342.0)(rrr fy 32=0.8(-)3rr)60(r当当r(0,2)时,时,()(0)0f rf答:当瓶子半径为答:当瓶子半径为6cm时,每瓶饮料的利润最大,时,每瓶饮料的利润最大,当瓶子半径为当瓶子半径为2cm时,每瓶饮料的利润最小时,每瓶饮料的利润最小.28.8 故故f(6)是最大值是最大值-+减函数减函数 增函数增函数 极小值极小值而当而当r(2,6时,时,()(6
5、)_f rf例例2、海报版面尺寸的设计:、海报版面尺寸的设计:学校或班级举行活动,通常需要张贴海报进行宣传,学校或班级举行活动,通常需要张贴海报进行宣传,现让你设计一张如右图所示的竖向张贴的海报,要求版现让你设计一张如右图所示的竖向张贴的海报,要求版心面积为心面积为128dm2,上、下两边各空,上、下两边各空2dm,左、右两边各,左、右两边各空空1dm,如何设计海报的尺寸才能使四周空白面积最小?,如何设计海报的尺寸才能使四周空白面积最小?2dm2dm1dm1dm解:设版心的高为解:设版心的高为xdm,则版心的,则版心的宽宽 dm,此时四周空白面积为,此时四周空白面积为128x128()(4)(
6、2)128S xxx51228(0)xxx2512()2Sxx()016-16Sxxx令令可可解解得得(舍舍去去)-+减函数减函数 增函数增函数 极小值极小值列表讨论如下:列表讨论如下:S(x)在在(0,+)上只有一个极值点上只有一个极值点由上表可知,当由上表可知,当x=16,即当版心高为,即当版心高为16dm,宽为宽为8dm时,时,S(x)最小最小答:当版心高为答:当版心高为16dm,宽为,宽为8dm时,海报四周的时,海报四周的 空白面积最小。空白面积最小。2512512()28()2S xxSxxx,1优化问题 生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题新
展开阅读全文