直线的参数方程应用周五课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《直线的参数方程应用周五课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线 参数 方程 应用 周五 课件
- 资源描述:
-
1、M0(x0,y0)M(x,y)e(cossin),00000()()()M Mx yxyxxyy,解:在直线上任取一点解:在直线上任取一点M(x,y),则,则(cossin)ele 设设是是直直线线 的的单单位位方方向向向向量量,则则,00/M MetRM Mte因因为为,所所以以存存在在实实数数,使使,即即00()(cossin)xxyyt,00cossinxxtyyt所所以以,00cossinxxtyyt即即,00cossinxxttyyt 所所以以,该该直直线线的的参参数数方方程程(为为为为参参数数)xOy0M Mtelt 由由,你你能能得得到到直直线线 的的参参数数方方程程中中参参数数
2、的的几几何何意意义义吗吗?|t|=|M0M|M0Me00|M MteM Mte解解:,|1ee又又因因为为 是是单单位位向向量量,0|.M Mtet所以,直线参数方程中参数所以,直线参数方程中参数t的绝对值等于直线上动点的绝对值等于直线上动点M到定点到定点M0的距离的距离.这就是这就是 t 的几何的几何意义,要牢记意义,要牢记xOy0000002cos30()3sin60.30.60.45.135xttytABCD (1)直线为参数 的倾斜角 是()Dsin203(cos20.20.70.110.160ooooooxttABCDyt (2)直线为参数)的倾斜角 是()C21.:10(1 2)l
3、xyyxA BABMA B 例例已已知知直直线线与与抛抛物物线线交交于于,两两点点,求求线线段段的的长长度度和和点点,到到,两两点点的的距距离离之之积积.分析分析:3.点点M是否在直线上是否在直线上1.用普通方程去解还用普通方程去解还是用参数方程去解;是用参数方程去解;2.分别如何解分别如何解.ABM(-1,2)xyO解:因为把点解:因为把点M的坐标代入直的坐标代入直线方程后,符合直线方程,所线方程后,符合直线方程,所以点以点M在直线上在直线上.31cos4()32sin4xttyt 为为参参数数34 易易知知直直线线的的倾倾斜斜角角为为,所所以以直直线线的的参参数数方方程程可可以以写写成成:
4、21.:10(1 2)lxyyxA BABMA B 例例已已知知直直线线与与抛抛物物线线交交于于,两两点点,求求线线段段的的长长度度和和点点,到到,两两点点的的距距离离之之积积.M(-1,2)ABxOy212()222xttyt 即即为为参参数数22220.yxtt 把把它它代代入入抛抛物物线线方方程程,得得1221021022tt解解得得,t由由参参数数 的的几几何何意意义义得得12|10ABtt,121 2|2.MAMBttt tM(-1,2)ABxOy12121212()0.(1)(2)f x yMMttM MM MMt 直直线线与与曲曲线线,交交于于,两两点点,对对应应的的参参数数分分
展开阅读全文