书签 分享 收藏 举报 版权申诉 / 49
上传文档赚钱

类型身边的数学-高中数学-校本课程教案.doc

  • 上传人(卖家):四川天地人教育
  • 文档编号:3618120
  • 上传时间:2022-09-26
  • 格式:DOC
  • 页数:49
  • 大小:1.03MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《身边的数学-高中数学-校本课程教案.doc》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    身边 数学 高中数学 校本 课程 教案 下载 _其他_数学_高中
    资源描述:

    1、目录序 言1第一讲 世界数学难题欣赏四色猜想2第二讲 世界数学难题欣赏哥尼斯堡七桥问题4第三讲 电冰箱温控器调节6第四讲 赌马中的数学问题10第五讲 对称自然美的基础12第七讲 斐波那契数列14第八讲 蜂房中的数学17第九讲 龟背上的学问18第十讲 Music 与数学20第十一讲 e和银行业21第十二讲 几何就在你的身边23第十三讲 巧用数学看现实24第十四讲 商品调价中的数学问题25第十五讲 煤商怎样进煤利润高27第十六讲 把握或然,你会更聪明29第十七讲 顺水推舟,克“敌”致胜 例谈反证法的应用33第十八讲 抽屉原理和六人集会问题33第十九讲 数独游戏与数学33第二十讲 集合与生活33第二

    2、十一讲 生活中的立体几何33第二十二讲 生活中的排列组合33第二十三讲 算法妙用33序 言数学是打开知识大门的钥匙,是整个科学的基础知识。创新教学的先行者里斯特伯先生指出:“学生学习数学就是要解决生活问题,只有极少数人才能攻关艰深的高级数学问题,我们不能只为了培养尖端人才而忽略或者牺牲大多数学生的利益,所以数学首先应该是生活概念。”在生活中学数学,以学生生活中实实在在的鲜活材料来吸引学生对科学的兴趣。我们选取的都是从学生生活实践中取材,将数学知识巧妙地运用于生活之中,增加了学生对数学的兴趣,实现新课改所倡导的情感体验,培养良好的科学态度和正确价值观的目标。数学校本课程的开发要满足学生已有的兴趣

    3、和爱好,又要激发和培养学生新的兴趣和爱好,要要求和鼓励学生投入生活,亲身实践体验。选题要尊重学生的实际、学生的探究本能和兴趣,给与每个学生主体性发挥的广阔空间,从而更好的培养学生提出问题、分析问题、解决问题的素质和能力。使学生成为学习的主人,学有兴趣,习有方法,必有成功。学生的个性在社会活动中得以健康发展,学生的潜能在自学自育中得到充分开发。第一讲 世界数学难题欣赏四色猜想平面内至多可以有四个点构成每两个点两两连通且连线不相交。可用符号表示:K(n),n=、4。四色原理简介:这是一个拓扑学问题,即找出给球面(或平面)地图着色时所需用的不同颜色的最小数目。着色时要使得没有两个相邻(即有公共边界线

    4、段)的区域有相同的颜色。1852年英国的格思里推测:四种颜色是充分必要的。1878年英国数学家凯利在一次数学家会议上呼吁大家注意解决这个问题。直到1976年,美国数学家阿佩哈尔、哈肯和考西利用高速电子计算机运算了1200个小时,才证明了格思里的推测。20世纪80-90年代曾邦哲的综合系统论(结构论)观将“四色猜想”命题转换等价为“互邻面最大的多面体是四面体”。四色问题的解决在数学研究方法上的突破,开辟了机器证明的美好前景。 四色定理的诞生过程:世界近代三大数学难题之一(另外两个是费马定理和哥德巴赫猜想)。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯格思里(Francis Gut

    5、hrie)来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”,用数学语言表示,即“将平面任意地细分为不相重迭的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿

    6、爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。18781880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。肯普的证明是这样的:首先指出如果没有一个国家包围其他国家,或没有三个以上的国家相遇于一点,这种地图就说是“正规的”(左图)。如为正规地图,否则为非正规地图(右图)。一张地图往往是由正规地

    7、图和非正规地图联系在一起,但非正规地图所需颜色种数一般不超过正规地图所需的颜色,如果有一张需要五种颜色的地图,那就是指它的正规地图是五色的,要证明四色猜想成立,只要证明不存在一张正规五色地图就足够了。肯普是用归谬法来证明的,大意是如果有一张正规的五色地图,就会存在一张国数最少的“极小正规五色地图”,如果极小正规五色地图中有一个国家的邻国数少于六个,就会存在一张国数较少的正规地图仍为五色的,这样一来就不会有极小五色地图的国数,也就不存在正规五色地图了。这样肯普就认为他已经证明了“四色问题”,但是后来人们发现他错了。不过肯普的证明阐明了两个重要的概念,对以后问题的解决提供了途径。第一个概念是“构形

    8、”。他证明了在每一张正规地图中至少有一国具有两个、三个、四个或五个邻国,不存在每个国家都有六个或更多个邻国的正规地图,也就是说,由两个邻国,三个邻国、四个或五个邻国组成的一组“构形”是不可避免的,每张地图至少含有这四种构形中的一个。肯普提出的另一个概念是“可约”性。“可约”这个词的使用是来自肯普的论证。他证明了只要五色地图中有一国具有四个邻国,就会有国数减少的五色地图。自从引入“构形”,“可约”概念后,逐步发展了检查构形以决定是否可约的一些标准方法,能够寻求可约构形的不可避免组,是证明“四色问题”的重要依据。但要证明大的构形可约,需要检查大量的细节,这是相当复杂的。 11年后,即1890年,数

    9、学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种

    10、推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,在J. Koch的算法的支持下,美国数学家阿佩尔(Kenneth Appel)与哈肯(Wolfgang Haken)在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界,当时中国科学家也有在研究这原理。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。 四色定理是第一个主要由计算机证明的理论,这一证明并不被所有的数学家接受,因为它不能由人工直接验证。最终,

    11、人们必须对计算机编译的正确性以及运行这一程序的硬件设备充分信任。缺乏数学应有的规范成为了另一个方面;以至于有人这样评论“一个好的数学证明应当像一首诗而这纯粹是一本电话簿!”由四色猜想产生了德摩尔根地图四色定理,地球区划图的奥秘四色定理,宇宙万物图的奥秘十六色定理,宏伟的原创性科学发现和发明万有图形色数。第二讲 世界数学难题欣赏哥尼斯堡七桥问题请你做下面的游戏:一笔画出如图1的图形来。规则:笔不离开纸面,每根线都只能画一次。这就是古老的民间游戏一笔画。你能画出来吗?如果你画出来了,那么请你再看图2能不能一笔画出来?虽然你动了脑筋,但我相信你肯定不能一笔画出来!为什么我的语气这么肯定?我们来分析一

    12、下图2。我们把图2看成是由点和线组成的一种集合。图里直线的交点叫做顶点,连结顶点的线叫做边。这个图是联通的,即任何二个顶点之间都有边。很显然,图中的顶点有两类:一类是有偶数条边联它的,另一类是有奇数条边联它的。一个顶点如果有偶数条边联它的,这点就称为偶点;如果有奇数条边联它的,就称它为奇点。我们知道,能一笔画的图形只有两类:一类是所有的点都是偶点。另一类是只有二个奇点的图形。图2有六个奇点,四个偶点,当然不能一笔画出来了。为什么能一笔画的图形只有上述两类呢?有关这个问题的讨论,要追溯到二百年前的一个著名问题:哥尼斯堡七桥问题。十八世纪东普鲁士哥尼斯堡城(今俄罗斯加里宁格勒)的普莱格尔河,它有两

    13、个支流,在城市中心汇成大河,中间是岛区,河上有7座桥,将河中的两个岛和河岸连结,如图3所示。由于岛上有古老的哥尼斯堡大学,有教堂,还有哲学家康德的墓地和塑像,因此城中的居民,尤其是大学生们经常沿河过桥散步。渐渐地,爱动脑筋的人们提出了一个问题:一个散步者能否一次走遍7座桥,而且每座桥只许通过一次,最后仍回到起始地点。这就是七桥问题,一个著名的图论问题。 图3这个问题看起来似乎很简单,然而许多人作过尝试始终没有能找到答案。因此,一群大学生就写信给当时年仅20岁的大数学家欧拉。欧拉从千百人次的失败,以深邃的洞察力猜想,也许根本不可能不重复地一次走遍这七座桥,并很快证明了这样的猜想是正确的。欧拉是这

    14、样解决问题的:既然陆地是桥梁的连接地点,不妨把图中被河隔开的陆地看成4个点,7座桥表示成7条连接这4个点的线,如图4所示。 图4 图5于是“七桥问题”就等价于图5中所画图形的一笔画问题了。欧拉注意到,如果一个图能一笔画成,那么一定有一个起点开始画,也有一个终点。图上其它的点是“过路点”画的时候要经过它。现在看“过路点”具有什么性质。它应该是“有进有出”的点,有一条边进这点,那么就要有一条边出这点,不可能是有进无出,如果有进无出,它就是终点,也不可能有出无进,如果有出无进,它就是起点。因此,在“过路点”进出的边总数应该是偶数,即“过路点”是偶点。如果起点和终点是同一点,那么它也是属于“有进有出”

    15、的点,因此必须是偶点,这样图上全体点都是偶点。如果起点和终点不是同一点,那么它们必须是奇点,因此这个图最多只能有二个奇点。现在对照七桥问题的图,所有的顶点都是奇点,共有四个,所以这个图肯定不能一笔画成。欧拉对“七桥问题”的研究是图论研究的开始,同时也为拓扑学的研究提供了一个初等的例子。事实上,中国民间很早就流传着这种一笔画的游戏,从长期实践的经验,人们知道如果图的点全部是偶点,可以任意选择一个点做起点,一笔画成。如果是有二个奇点的图形,那么就选一个奇点做起点以顺利的一笔画完。可惜的是,古时候没有人对它重视,没有数学家对它进行经验总结,以及加以研究。今天学习欧拉的成果不应是单纯把它作为数学游戏,

    16、重要的是应该知道他怎样把一个实际问题抽象成数学问题。研究数学问题不应该为“抽象而抽象”,抽象的目的是为了更好的、更有效的解决实际产生的问题,欧拉对“七桥问题”的研究就是值得我们学习的一个样板。第三讲 电冰箱温控器调节人民生活水平日益提高,许多家庭都购买了电冰箱等家用电器。但是有许多家庭并不了解电冰箱的工作原理,更不了解电冰箱温控器的工作原理及其调节方法。不正确的使用电冰箱势必会缩短其使用寿命,带来了不必要的麻烦,同时也浪费了自然资源和财力。电冰箱工作了很长时间,却一直不停机。检查后发现只是温控器调节的不正确。这使我们认识到了冰箱温控器对于电冰箱的重要性。因此,我们来研究一下电冰箱温控器的正确使

    17、用方法,即如何使电冰箱的使用寿命更长。问题:如何正确调节电冰箱温控器,使电冰箱使用寿命更长。电冰箱制冷是靠中温低压的液态制冷剂进入蒸发器吸收热量汽化为低温低压的气态制冷剂,达到蒸发器周围降温使冰箱内部冷却的目的。压缩机、冷凝器、干燥过滤器、毛细管则是帮助并保证在蒸发器中已使用过的制冷剂回复到中温低压的液体,能再一次送回蒸发器吸热汽化,实现单向连续循环制冷。蒸发器是电冰箱中唯一制冷的器件。压缩机把蒸发器出来的低温低压的汽态制冷剂经回气管由压缩机吸入气缸,被压缩为高温高压的气态进入冷凝器,把蒸发器中吸收的热量和压缩机在压缩做功时转换的热量,利用制冷剂与周围介质之间有较大的温差,通过冷凝器全部散发到

    18、空气中。制冷剂在冷凝器中因放热而被液化。这高压中温液态制冷剂经干燥过滤器吸收其中的水分,滤除其中的杂质,进入毛细管节流降压,使高压液态制冷剂降为低压而能回到蒸发器重复使用。电冰箱就是这样由各种制冷剂作工质,在封闭系统中作单向连续循环,把冰箱内热量不断的转移到箱外而达到制冷目的。电冰箱压缩机是开开停停间歇工作的。电冰箱达到箱内的设定温度是通过温度控制器控制压缩机的开、停机来完成的。压缩机运转时间长,即制冷时间长,则箱内温低;反之箱温就高。温度控制器二个触点串联在压缩机电路中,当箱内温度低到某一设定温度时则温控器触点跳开,压缩机停转,暂停制冷,随后箱内温度逐渐提高,在箱内温度高到另一设定温度时则温

    19、控器触点闭合,压缩机又运转制冷如此循环。使箱内温度保持在一定范围内。电冰箱温控器中的感温包感受蒸发器的温度,当温度升高或降低时,感温元件中感温剂膨胀或收缩,使非刚性元件感温腔(波纹管或膜盒)推进或退缩,从而改变感温元件与弹簧片之间的作用力通过温控器中机械传力放大,使感温腔微小形变产生的微小位移放大,控制电触点,使其闭合或断开电路。温控器指向的数字,并不表示确切的温度,而是表示控制温度高低的程度趋向,数字小表示控制在较高温度,数字大则表示控制在较低温度。我们认为,压缩机的使用寿命在很大程度上决定了电冰箱的使用寿命。而影响压缩机工作时间的因素主要有:外界温度、温控器档位、冷冻室食品量、开关冰箱门习

    20、惯。当电冰箱工作稳定后,冷冻室食品量对其影响十分微小,但不可以忽略不计。无论是在寒冷的冬季,还是在炎热的夏季,冰箱中的食品都是在不断的吸热和放热。当冰箱内冷汽散失时,食品吸热;当电冰箱制冷吸热时,食品放热。这在夏季时最为明显:当电冰箱停机时,冰箱内食品越多其停机时间越长,因为如果假设食品的平均比热容不变,那么根据物理学关于热能的公式Q=MCT可知食品量与停机时间成反比。其中Q 为食品热量变化,C 为食品平均比热,T食品温度变化量。因此,冰箱内食品量的多少也是十分重要的。实际上,外界温度随季节变化而变化,温控器档位靠人工调节,冰箱内的食品量和如何开关门对于一个家庭来讲变化不会很大,因为已经形成了

    21、习惯。但是,使用时如果压缩机长时间连续工作,压缩机温度就会升高,就会造成热冲击。过多的热冲击会缩短压缩机的使用寿命。因此,我们只要调节温控器档位,使电冰箱冷冻室温度不低于某一温度,而且压缩机在非长时间连续工作的条件下(不超过一个小时),工作时间与工作、停机的时间和的比值最小(如工作10分钟,停机10分钟,则比值为0.5),即压缩机的使用寿命更长,就可以使电冰箱的使用寿命更长。同时,电冰箱的耗电量也降低了。这样,一台电冰箱在使用过程中既省电,又可以延长使用寿命,当然十分经济。通过电冰箱生产厂家的电话咨询,专业技术人员肯定了我们的上述看法。于是我们就此进行了一些实验,并通过电话咨询得到了一些准确的

    22、数据。在北京等中国北方城市,冬季的供暖由市区县的各供暖单位负责保证。政府规定,冬季居民室内的温度不得低于16摄氏度。北京市的供暖单位现在一般能够保证这个温度在18摄氏度左右,最高温可达20摄氏度,最低温绝不低于16摄氏度。因此,可以认为我国北方冬季家庭室内温度在18摄氏度左右。又因为,我国北方春秋季节家庭室内温度也在18摄氏度左右,偏冷的地区依然有暖汽等供暖,甚至常年不断。所以,可以认为,我国北方春秋冬三季的家庭室内温度均在18摄氏度左右。就一般家庭而言,熟食一般现吃现买,生食一般只放几个星期。电冰箱冷冻室的食品量一般占冷冻室容积的五分之三左右,且一般变化不是很大。就是说,一般家庭的食品量对冰

    23、箱的影响基本相同。综上所述,我们理想化的实验条件是我国北方春秋冬三季一般家庭的电冰箱。在研究这个问题时可以把食品量和室内温度作为常数来考虑。由于每次开冰箱门时都会使冰箱内食品吸热升温,所以不同人的开门习惯和速度会影响到冰箱的制冷效果。比如说:老人可能手脚不是很利落,而且拿一件东西要想一下;年轻人可能一只手开门,另一只手就把东西拿出来了。为了简便计算,我们可以认为,在一个家庭中不考虑老人与青年人的分别,只考虑平均到每个家庭成员的使用效果,那么各个家庭的情况基本相同。结果是,我们在计算过程中可以忽略这一因素的影响。我们想利用家用电冰箱来进行一次实验。于是我们选用了长岭阿里斯顿 BCD 208 型电

    24、冰箱,在保持室温为18 摄氏度且食品量始终占冷冻室有效容积五分之三不变的情况下,测定了一些数据。这种电冰箱属于中等档次的家用电器,制冷效果属于一般水平。目前许多家庭使用的电冰箱的制冷效果和保温能力都与其相差无几。这些满足了本论文前面交代的实验条件,可以作为该条件下的一个例子,来解决这个问题。于是我们开始了实验。实验进行了一个多星期,每组数据(既一个档位)间间隔二个小时,让电冰箱进行调节,以保证数据的准确性。这台冰箱的温控器旋钮有六个档位,分别是从零到五。第零档为停机档,既电冰箱压缩机停止工作,不会启动;第五档为速冻档,即压缩机一直启动,不会停机。因此,我们不能选第零档,因为冰箱不会制冷;不能选

    25、第五档,因为冰箱持续工作,即浪费电能,又会造成热冲击,还有可能冻坏食品。我们设工作时间与工作、停机的时间和的比值为y ,设电冰箱温控器档位为x 。则自变量x 的取值范围为(0,5)。在平面直角坐标系中描点作图,为了便于计算,且不影响结果的正确,我们在计算时把原值扩大了100倍。这样可以方便计算,也能方便作图。观察散点的分布,我们认为这些点极有可能是在一条抛物线上,因此设y 关于x 的函数为。我们在后面附有实验数据列表和用绘图工具几何画板作出的函数图象。其中,表格包含五组数据,在测定时每组数据之间至少间隔两个小时,因为电冰箱需要约一个小时来调整。函数图象有一个大致的轮廓。图中的空心圆点表示描点,

    26、实心圆点表示当x 为4.5时函数图象上的点。我们分别以三组数据为一组,把五组数据分成了十组。设五组数据对应函数图象上的点从左至右依次为A、B、C、D、E,则将五组数据分组为:ABC、ABD、ABE、ACDBDE、CDE。每组可分别解出一个函数,但都有一定误差。其中,凡是包含数据组E 的组误差都十分大,且不太正常。我们认为是由于压缩机升温且冷凝器温度升高散热变慢,导致电冰箱工作异常。这种可能性十分大,属于正常现象。通过电话咨询,冰箱厂家的技术人员肯定了我们的想法,并告诉我们:目前一些高级的冷凝管可以大大提高散热效率,但造价颇高,且调节温控器就可解决问题,没必要多花钱去生产。于是把数据组E 舍去,

    27、只计算前四组,又可以分为四组:ABC、ABD、ACD、BCD。以这四组数据分别解出一个函数,这四组函数中也存在误差,但是应该保留数据组A 存在误差的那一分组。因为,温控器调得过低后也会造成冰箱本身的问题。由于档位越低,要求达到的温度越高(不一定始终在设定温度以下),所以要工作的时间就比较短,但停机时间缩短得更多。就是说,冰箱内的食品在较长时间内放出了热量,在较短的时间内又吸入了大致相同的热量。冰箱在这时需要适度调低要求达到的温度。这就是为什么要注意温控器的调节。就是说,由BCD 解得的函数对于点A、D 的误差属于合理误差。最后,只有BCD 这一组的不合理误差最小(此时A点误差为-0.36),最

    28、后解得的函数即为所求的函数y=f(x)。由数据组BCD 解函数:当x = 2.574 时,函数有最小值y = 35.846;所以,温控器旋钮应指在2.574 的位置。可是由于实验中不可能消除误差,所以应指在2、3 之间的一个位置,室温稍低时就调低一点儿,反之就高一点儿,一般家庭不用经常调,温度差2到3 度不会有大影响。但是不同的电冰箱性能不同,具体的食品量在变化,外界温度也会上下浮动,每个人每一次开门造成的影响都不相同,不同品牌电冰箱温控器控制面板也不相同。所以忽略绝大多数家庭相同的因素,只须再考虑不同的电冰箱性能不同、电冰箱温控器控制面板也不相同。尽管不同的电冰箱性能不同,但是它们的工作原理

    29、相同,都是在不断的吸热、放热。就是说,它们在那个档位基本上都是最佳的。虽然电冰箱温控器控制面板不相同,但是内部旋转多少角度能调节多少温度,却是同样基本相同的。目前市场上比较多的样式主要有:“0”到“5”,“1”到“7”和“弱”、“中”、“强”。由于我们实验用的电冰箱配备的是第一种样式的温控器,所以对应到其它两种样式分别是“3”、“4”档之间和“中”略偏“弱”。问题解决了,是在中国北方春秋冬三季,一般家庭家用电冰箱温控器的调节。目的是如何更经济的使用好电冰箱。答案就是上一段最后的几句话。问题虽然很小,而且用的就是解方程的方法,但却能培养我们从生活中寻找数学问题、运用数学知识的好习惯。这对于推行素

    30、质教育是一个极佳的方法,它使学生因为自己的兴趣而学习,知识也就更加牢固。另外,这个问题可以扩展到其它方面。如下水道的清理问题,你必须知道什么时候清理最合理:时间早了浪费物资,晚了又极难工作。当然牵扯的量也是相当多的。我们相信,通过我们不断的学习,我们将解决更多的生活中的问题。第四讲 赌马中的数学问题 随着中国的改革开放,境外许多事物渐渐被生活在大陆的人知晓诸如赌马、六合彩等常在媒体中提及。对我们来说,了解一些原来不熟悉的东西也是必要的。其实,一些博彩游戏和古老的赌博有许多相似之处,我们可以用初等概率知识对其中的现象作一定的分析。我们以赌马问题为例。为简便起见,假设只有两匹马参加比赛。通过对决定

    31、马匹胜负的各因素的研究以及对以往赛事胜负情况的统计分析,我们可得出两匹马各自胜出的实际概率。不失一般性,设其中一匹马胜出的实际概率为,则另一匹马胜出的实际概率为。那么,参赌者该如何下注以最大的限度确保他们能赢得钱呢?要解决这个问题必须先弄明白庄家的赔率是如何设定的。所谓赔率,是指押注一元钱于胜方所获得的总金额。举例来说,若赔率为1.65元,则如押注一元的一方恰好胜出,可得收益0.65元,加上本金,一共可得1.65元。若押注负方,则会失去所押注的1元,但不须另外再输钱。现在,我们知道了马匹胜出的实际概率,知道了庄家设定的赔率,就可以分析参赌者该如何下注。这里,设总金额为1元,并设在第一匹马上押注

    32、元,则在第二匹马上押注。至于具体押注多少,参赌者可以将总金额按该比例分配给这两匹马。于是,可得下表:马匹第一匹第二匹胜出的实际概率庄家设定赔率(元)押注(元)如果第一匹马赢,参赌者可得到元,再减去付出的1元,参赌者的收益为元;同理,如果第二匹马赢,参赌者收益为元。考虑到两匹马胜出的实际概率分别为和,参赌者的期望收益为,其中。另外,若参赌者把所有钱都押注于第一匹马时期望收益为;若参赌者把所有的钱都押注于第二匹马时,期望收益为。自然,参赌者希望收益,这样,他们才能以一个正的概率赢利。所以要求:。 1)当,且,即当且时,不论取何值,恒大于0,且当趋向1时,趋向于极大值。实际上,当,即参赌者把钱全押注

    33、于第一匹马上时,有收益,所以参赌者应当把钱全部押注于第一匹马上。 2)当且,即当且时,收益随着的变大而变小,且当趋于0时,趋于极大值。实际上,当,即参赌者把钱全押注于第二匹马上时,有收益。所以参赌者应当把钱全押在第二匹马上。 3)当,时,为使,应满足: 。又,即。即当,且时,参赌者按分配赌注可期望赢利。且当趋向于1时,收益趋于极大值。同1)情况可知,这时,参赌者应把钱全押注于第一匹马上,有收益。 4)当,且时。这时不论赌注如何分配,参赌者的期望收益恒为负。在这情况下,参赌者介入其中是不理智的行为。以上是参赌者在已知胜出概率及赔率时选择的策略。同样,庄家在设置赔率时,一定会对实际各匹马胜出的概率

    34、作一番认真研究,由此设定相应赔率。这样,他才有可能不赔本。由此当庄家设置一个赔率时,我们也可以反推庄家所估计的各匹马胜出的概率。例如,庄家赔率设定为15,则我们大致可以知道该马匹胜出概率大致应小于。其实,在其它涉及赔率、押注的简单模型中,我们也可以用相应的方法进行分析。当然,这只是对实际情况的一种简化。现实生活中的赌马不会仅有两匹,并且要求出各马匹实际胜出的概率是件非常困难的事,在一般情况下,只能求得近似解。第五讲 对称自然美的基础在丰富多彩的物质世界中,对于各式各样的物体的外形,我们经常可以碰到完美匀称的例子。它们引起人们的注意,令人赏心悦目。每一朵花,每一只蝴蝶,每一枚贝壳都使人着迷;蜂房

    35、的建筑艺术,向日葵上种子的排列,以及植物茎上叶子的螺旋状颁都令我们惊讶。仔细的观察表明,对称性蕴含在上述各种事例之中,它从最简单到最复杂的表现形式,是大自然形式的基础。 花朵具有旋转对称的性征。花朵绕花心旋转适当位置,每一花瓣会占据它相邻花瓣原来的位置,花朵就自相重合。旋转时达到自相重合的最小角称为元角。不同的花这个角不一样。例如梅花为72,水仙花为60。“对称”在生物学上指生物体在对应的部位上有相同的构造,分两侧对称(如蝴蝶),辐射对称(放射虫,太阳虫等)。我国最早记载了雪花是六角星形。其实,雪花形状千奇百怪,但又万变不离其宗(六角星)。既是中心对称,又是轴对称。 很多植物是螺旋对称的,即旋

    36、转某一个角度后,沿轴平移可以和自己的初始位置重合。例如树叶沿茎杆呈螺旋状排列,向四面八方伸展,不致彼此遮挡为生存所必需的阳光。这种有趣的现象叫叶序。向日葵的花序或者松球鳞片的螺线形排列是叶序的另一种表现形式。“晶体闪烁对称的光辉”,这是俄国学者费多洛夫的名言。无怪乎在古典童话故事中,奇妙的宝石交织着温馨的幻境,精美绝伦,雍容华贵。在王冠上,以其熠熠光彩向世人炫耀,保持永久不衰的魅力。第六讲 对数螺线与蜘蛛网曾看过这样一则谜语:“小小诸葛亮,稳坐军中帐。摆下八卦阵,只等飞来将。”动一动脑筋,这说的是什么呢?原来是蜘蛛,后两句讲的正是蜘蛛结网捕虫的生动情形。我们知道,蜘蛛网既是它栖息的地方,也是它

    37、赖以谋生的工具。而且,结网是它的本能,并不需要学习。你观察过蜘蛛网吗?它是用什么工具编织出这么精致的网来的呢?你心中是不是有一连串的疑问,好,下面就让我来慢慢告诉你吧。在结网的过程中,功勋最卓著的要属它的腿了。首先,它用腿从吐丝器中抽出一些丝,把它固定在墙角的一侧或者树枝上。然后,再吐出一些丝,把整个蜘蛛网的轮廓勾勒出来,用一根特别的丝把这个轮廓固定住。为继续穿针引线搭好了脚手架。它每抽一根丝,沿着脚手架,小心翼翼地向前走,走到中心时,把丝拉紧,多余的部分就让它聚到中心。从中心往边上爬的过程中,在合适的地方加几根辐线,为了保持蜘蛛网的平衡,再到对面去加几根对称的辐线。一般来说,不同种类的蜘蛛引

    38、出的辐线数目不相同。丝蛛最多,42条;有带的蜘蛛次之,也有32条;角蛛最少,也达到21条。同一种蜘蛛一般不会改变辐线数。到目前为止,蜘蛛已经用辐线把圆周分成了几部分,相临的辐线间的圆周角也是大体 相同的。现在,整个蜘蛛网看起来是一些半径等分的圆周,画曲线的工作就要开始了。蜘蛛从中心开始,用一条极细的丝在那些半径上作出一条螺旋状的丝。这是一条辅助的丝。然后,它又从外圈盘旋着走向中心,同时在半径上安上最后成网的螺旋线。在这个过程中,它的脚就落在辅助线上,每到一处,就用脚把辅助线抓起来,聚成一个小球,放在半径上。这样半径上就有许多小球。从外面看上去,就是许多个小点。好了,一个完美的蜘蛛网就结成了。让

    39、我们再来好好观察一下这个小精灵的杰作:从外圈走向中心的那根螺旋线,越接近中心,每周间的距离越密,直到中断。只有中心部分的辅助线一圈密似一圈,向中心绕去。小精灵所画出的曲线,在几何中称之为对数螺线。对数螺线又叫等角螺线,因为曲线上任意一点和中心的连线与曲线上这点的切线所形成的角是一个定角。大家可别小看了对数螺线:在工业生产中,把抽水机的涡轮叶片的曲面作成对数;螺线的形状,抽水就均匀;在农业生产中,把轧刀的刀口弯曲成对数螺线的形状,它就会按特定的角度来切割草料,又快又好。第七讲 斐波那契数列斐波那契数列在自然界中的出现是如此地频繁,人们深信这不是偶然的。(1)细察下列各种花,它们的花瓣的数目具有斐

    40、波那契数:延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花。(2)细察以下花的类似花瓣部分,它们也具有斐波那契数:紫宛、大波斯菊、雏菊。斐波那契数经常与花瓣的数目相结合:3百合和蝴蝶花5蓝花耧斗菜、金凤花、飞燕草8翠雀花13金盏草21紫宛34,55,84雏菊(3)斐波那契数还可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那息叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。叶子在一个循回中旋转的圈数也是斐波那契数。在一个循回中叶子数与叶子旋转圈数的比称

    41、为叶序(源自希腊词,意即叶子的排列)比。多数的叶序比呈现为斐波那契数的比。(4)斐波那契数有时也称松果数,因为连续的斐波那契数会出现在松果的左和右的两种螺旋形走向的数目之中。这种情况在向日葵的种子盘中也会看到。此外,你能发现一些连续的鲁卡斯数吗?(5)菠萝是又一种可以检验斐波那契数的植物。对于菠萝,我们可以去数一下它表面上六角形鳞片所形成的螺旋线数。斐波那契数列与黄金比值相继的斐波那契数的比的数列:它们交错地或大于或小于黄金比的值。该数列的极限为。这种联系暗示了无论(尤其在自然现象中)在哪里出现黄金比、黄金矩形或等角螺线,那里也就会出现斐波那契数,反之亦然。第八讲 蜂房中的数学蜜蜂是勤劳的,它

    42、们酿造出了最甜的蜜;蜜蜂是聪明的,它们会分工合作,还会用舞蹈的形式告诉同伴:哪里有花源,数量怎么样。实际上,不仅如此,蜜蜂还是出色的建筑师。它们建筑的蜂房就是自然界诸多奇迹中的一个。 蜂房是正六棱柱的形状,它的底是由三个全等的菱形组成的。达尔文称赞蜜蜂的建筑艺术, 说它是:天才的工程师。法国的学者马拉尔狄曾经观察过蜂房的结构,在1712年,他写出了一篇关于蜂房结构的论文。他测量后发现,每个蜂房的体积几乎都是0.25立方厘米。底部菱形的锐角是70度32分,钝角是109度28分,蜜蜂的工作竟然是这样的精细。物理学家列奥缪拉也曾研究了这个问题,它想推导出:底部的菱形的两个互补的角是多大时,才能使得蜂

    43、房的容量达到最大,他没有把这项工作进行下去。苏格兰的数学家马克劳林通过计算得出了与前面观察完全吻合的数据。公元4世纪,数学家巴普士就告诉我们:正六棱柱的蜂房是一种最经济的形状,在其他条件相同的情况下,这种结构的容积最大,所用的材料最少。他给出了严格的证明。看来,我们不得不为蜜蜂的高超的建筑艺术所折服了。马克思也高度地评价它:蜜蜂建筑蜂房的本领使人间的许多建筑师感到惭愧。现在,许多建筑师开始模仿蜂房的结构,并把它们应用到建筑的实践中去。第九讲 龟背上的学问传说大禹治水时,在一次疏通河道中,挖出了一只大龟,人们很是惊讶,争相观看,只见龟背上清晰刻着图1所示的一个数字方阵。这个方阵,按孙子算经中筹算

    44、记数的纵横相间制:“凡算之法,先识其位。一纵十横,百立千僵,千十相望,万百相当。六不积算,五不单张。”可译成现代的数字,如图2所示。方阵包括了九个数字,每一行一与列的数字和均为15,两条对角线上的数也有相同的性质。当时,人们以为是天神相助,治水有望了。后来,人们称刻在龟背上的方阵为“幻方”(国外称为“拉丁方”),属于组合数学范畴。使用整数19构成的33阶“拉丁方”唯一可能的和数是15,这一点只要把这“拉丁方”中所有数加起来便可证明,1十2十3十4十5十6十7十8十945,要把这几个数分配到三行(或列)使得每行(或列)有同样的和,那么,每行(或列)的和应为453150组合数学是数学中的一个分支,

    45、在实际生活中应用很广泛,请看下面的例子。5名待业青年,有7项可供他们挑选的工作,他们是否能找到自己合适的工作呢?由于每个人的文化水平、兴趣爱好及性别等原因,每个人只能从七项工作中挑选某些工种,也就是说每个人都有一张志愿表,最后根据需求和志愿找到一个合适的工作。组合数学把每一种分配方案叫一种安排。当然第一个问题是考虑安排的存在性,这就是存在问题;第二个问题是有多少种安排方法,这就是计数问题。接下去要考虑在众多的安排中选择一种最好的方案,这就是所谓的“最优化问题”。存在问题、构造问题、计数问题和最优化问题就构成了全部组合数学的内容。如果你想了解更多的组合数学问题,那就要博览有关书籍,你会得到许多非

    46、常有趣的知识,会给你许多的启发和教益。第十讲 Music 与数学动人的音乐常给人以美妙的感受。古人云:余音绕梁,三日不绝,这说的是唱得好,也有的人五音不全,唱不成调,这就是唱得不好了。同样是唱歌,甚至是唱同样的歌,给人的感觉却是迥然不同。其重要原因在于歌唱者发声振动频率不同。人类很早就在实践中对声音是否和谐有了感受,但对谐和音的比较深入的了解只是在弦乐器出现以后,这是因为弦振动频率和弦的长度存在着简单的比例关系。近代数学已经得出弦振动的频率公式是W ,这里,P是弦的材料的线密度;T是弦的张力,也就是张紧程度;L是弦长;W是频率,通常以每秒一次即赫兹为单位。那么,决定音乐和谐的因素又是什么呢?人

    47、类经过长期的研究,发现它决定于两音的频率之比。两音频率之比越简单,两音的感觉效果越纯净、愉快与和谐。首先,最简单之比是:。例如,一个音的频率是160、7赫兹,那么,与它相邻的协和音的频率应该是2260、7赫兹,这就是高八度音。而与频率为2260、7赫兹的音和谐的次一个音是4260、7赫兹。这样推导下去,我们可以得到下面一列和谐的音乐:260、7,2260、7,22260、7我们把它简记为C0,C1,C2,称为音名。由于我们讨论的是音的比较,可暂时不管音的绝对高度(频率),因此又可将音乐简写为:C0C1C2C320212223需要说明的是,在上面的音列中,不仅相邻的音是和谐的,而且C与C2,C与C3等等也都是和谐的。一般说来这些协和音频率之比是2M。(其中M是自然数)第十一讲 e和银行业跟我们日常的事情有什么关系呢?事实上它在我们日常生活中,跟任何一个特定的整数一样

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:身边的数学-高中数学-校本课程教案.doc
    链接地址:https://www.163wenku.com/p-3618120.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库