高中数学思维校本课程.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学思维校本课程.doc》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 思维 校本 课程 下载 _其他_数学_高中
- 资源描述:
-
1、二 0 一 五 年 十一 月目 录课程开发与实施安排表校本课程实施纲要第一部分 数学思维的变通性(1)善于观察(2)善于联想(3)善于将问题进行转化第二部分 数学思维的反思性(1) 检查思路是否正确,注意发现其中的错误(2) 验算的训练(3) 独立思考,敢于发表不同见解校本课程开发与实施安排表课程开发生活中的数学开发教师教研组数学组课程学习目标以全面贯彻落实课改精神为宗旨,以数学思维为主线,提高学生学习数学的兴趣,全面推进素质教育。1、 通过教学,增强学生学习数学的兴趣;2、 通过教学,让学生了解数学源于生活、应用于生活;3、 通过数学,培养学生发现问题、解决问题等自主学习的能力课程内容设计第
2、一部分 数学思维的变通性第二部分 数学思维的反思性第三部分 数学思维的严密性第四部分 数学思维的开拓性可提供的总教案数教材方式适用年级高一、高二选课人数60教学设备要求多媒体所需课时6-8上课形式集体参考文献考核方式考核指标及标准出勤率日常作业考核(学分)总评0.20.10.61学科组长意见学生选报情况综述(包括学生应具备的基本素质)上届学生反馈及需完善的地方校本课程指导小组意见数学思维校本课程纲要一、基本项目课程名称:数学思维授课老师:授课对象:高一、高二年级部分学生教学材料:相关网站、资料二、课程目标以全面贯彻落实课改精神为宗旨,以数学思维为主线,提高学生学习数学的兴趣,全面推进素质教育。
3、1、通过教学,增强学生学习数学的兴趣;2、通过教学,让学生了解数学源于生活、应用于生活;3、通过数学,培养学生发现问题、解决问题等自主学习的能力课程内容:第一部分 数学思维的变通性第二部分 数学思维的反思性第三部分 数学思维的严密性第四部分 数学思维的开拓性四、课程实施建议基础知识教学、实物演示、电教配合、图上作业、小组研讨、模拟训练、考查等。五、课程评价评价指标(一):学生自评与互评相结合,即上课出勤情况、课堂纪律情况、参与练习情况、团结协作情况;评价指标(二):平时模拟训练与考查相结合;评价指标(三):教师综合评定给与相应等级;评价等级均为:优秀、良好、中等、须努力四档第一讲 数学思维的变
4、通性一、概念数学问题千变万化,要想既快又准的解题,总用一套固定的方案是行不通的,必须具有思维的变通性善于根据题设的相关知识,提出灵活的设想和解题方案。根据数学思维变通性的主要体现,本讲将着重进行以下几个方面的训练:(1)善于观察(2)善于联想(3)善于将问题进行转化(1)观察能力的训练任何一道数学题,都包含一定的数学条件和关系。要想解决它,就必须依据题目的具体特征,对题目进行深入的、细致的、透彻的观察,然后认真思考,透过表面现象看其本质,这样才能确定解题思路,找到解题方法。虽然观察看起来是一种表面现象,但它是认识事物内部规律的基础。所以,必须重视观察能力的训练,使学生不但能用常规方法解题,而且
5、能根据题目的具体特征,采用特殊方法来解题。例1 已知都是实数,求证 思路分析 从题目的外表形式观察到,要证的结论的右端与平面上两点间的距离公式很相似,而xyO图121左端可看作是点到原点的距离公式。根据其特点,可采用下面巧妙而简捷的证法,这正是思维变通的体现。证明 不妨设如图121所示,则 在中,由三角形三边之间的关系知: 当且仅当O在AB上时,等号成立。 因此, 例2 已知,试求的最大值。解 由 得又当时,有最大值,最大值为思路分析 要求的最大值,由已知条件很快将变为一元二次函数然后求极值点的值,联系到,这一条件,既快又准地求出最大值。上述解法观察到了隐蔽条件,体现了思维的变通性。例3 已知
6、二次函数满足关系,试比较与的大小。xyO2图122思路分析 由已知条件可知,在与左右等距离的点的函数值相等,说明该函数的图像关于直线对称,又由已知条件知它的开口向上,所以,可根据该函数的大致图像简捷地解出此题。解 (如图122)由,知是以直线为对称轴,开口向上的抛物线它与距离越近的点,函数值越小。(2)联想能力的训练联想是问题转化的桥梁。稍具难度的问题和基础知识的联系,都是不明显的、间接的、复杂的。因此,解题的方法怎样、速度如何,取决于能否由观察到的特征,灵活运用有关知识,做出相应的联想,将问题打开缺口,不断深入。例如,解方程组.这个方程指明两个数的和为,这两个数的积为。由此联想到韦达定理,、
7、是一元二次方程 的两个根,所以或.可见,联想可使问题变得简单。例4 在中,若为钝角,则的值(A) 等于1 (B)小于1 (C) 大于1 (D) 不能确定思路分析 此题是在中确定三角函数的值。因此,联想到三角函数正切的两角和公式可得下面解法。解 为钝角,.在中且故应选择(B)例5 若思路分析 此题一般是通过因式分解来证。但是,如果注意观察已知条件的特点,不难发现它与一元二次方程的判别式相似。于是,我们联想到借助一元二次方程的知识来证题。证明 当时,等式 可看作是关于的一元二次方程有等根的条件,在进一步观察这个方程,它的两个相等实根是1 ,根据韦达定理就有: 即 若,由已知条件易得 即,显然也有.
8、例6 已知均为正实数,满足关系式,又为不小于的自然数,求证:思路分析 由条件联想到勾股定理,可构成直角三角形的三边,进一步联想到三角函数的定义可得如下证法。证明 设所对的角分别为、则是直角,为锐角,于是 且当时,有于是有即 从而就有 (3)问题转化的训练数学家G . 波利亚在怎样解题中说过:数学解题是命题的连续变换。可见,解题过程是通过问题的转化才能完成的。转化是解数学题的一种十分重要的思维方法。那么怎样转化呢?概括地讲,就是把复杂问题转化成简单问题,把抽象问题转化成具体问题,把未知问题转化成已知问题。在解题时,观察具体特征,联想有关问题之后,就要寻求转化关系。例如,已知,求证、三数中必有两个
展开阅读全文