13全称量词与存在量词课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《13全称量词与存在量词课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 13 全称 量词 存在 课件
- 资源描述:
-
1、(1)对所有的实数)对所有的实数x,都有,都有x20;(2)存在实数)存在实数x,满足,满足x20;(3)至少有一个实数)至少有一个实数x,使得,使得x220成立;成立;(4)存在有理数)存在有理数x,使得,使得x220成立;成立;(5)对于任何自然数)对于任何自然数n,有一个自然数,有一个自然数s 使得使得 s=n n;问题引入:下列命题中含有哪些量词?下列语句是命题吗?(1)与(3),(2)与(4)之间有什么关系?(1)x3;(2)2x+1是整数;(3)对所有的xR,x3;(4)对任意一个xZ,2x+1是整数。语句(1)(2)不能判断真假,不是命题;语句(3)(4)可以判断真假,是命题。全
2、称量词、全称命题定义:短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“”表示。含有全称量词的命题,叫做全称命题。常见的全称量词还有“一切”“每一个”“任给”“所有的”等。全称命题举例:命题符号记法:命题:对任意的nZ,2n+1是奇数;所有的正方形都是矩形。通常,将含有变量x的语句用p(x),q(x),r(x),表示,变量x的取值范围用M表示,那么,(),xMp x,全称命题“对M中任意一个x,有p(x)成立”可用符号简记为:读作“对任意x属于M,有p(x)成立”。三、新知建构,典例分析 22,sinsincosxRxxx 例例如如:(1)(1)实数都能写成小数形式实数都能写成小数
3、形式;例例1 1:用量词用量词“”“”表达下列命题表达下列命题:(2 2)任一个实数乘以)任一个实数乘以-1-1都等于它的相反数都等于它的相反数x R,xx R,x能写成小数形式能写成小数形式x R,x(-1)=-xx R,x(-1)=-x下列语句是命题吗?(1)与(3),(2)与(4)之间有什么关系?(1)2x+1=3;(2)x能被2和3整除;(3)存在一个x0R,使2x+1=3;(4)至少有一个x0Z,x能被2和3整除。语句(1)(2)不能判断真假,不是命题;语句(3)(4)可以判断真假,是命题。存在量词、特称命题定义:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“”表
4、示。含有存在量词的命题,叫做特称命题。常见的存在量词还有“有些”“有一个”“对某个”“有的”等。特称命题举例:命题:有的平行四边形是菱形;有一个素数不是奇数。00(),xMp x,特称命题“存在M中的一个x0,使p(x0)成立”可用符号简记为:读作“存在一个x0属于M,使p(x0)成立”。三、新知建构,典例分析 例例2 2:设设q(x):xq(x):x2 2=x,=x,使用不同的表达方法写出使用不同的表达方法写出存在量词命题存在量词命题“xR,q(x)”xR,q(x)”解解:存在存在实数实数x,x,使使x x2 2=x=x成立成立至少有一个至少有一个xR,xR,使使x x2 2=x=x成立成立
5、对有些对有些实数实数x,x,使使x x2 2=x=x成立成立有一个有一个xR,xR,使使x x2 2=x=x成立成立对某个对某个xR,xR,使使x x2 2=x=x成立成立全称命题、特称命题的表述方法:命题命题 全称命题全称命题特称命题特称命题所有的所有的xM,p(x)成立成立对一切对一切xM,p(x)成立成立对每一个对每一个xM,p(x)成成 立立任选一个任选一个xM,p(x)成成 立立凡凡xM,都有,都有p(x)成立成立存在存在x0M,使,使p(x)成立成立至少有一个至少有一个x0M,使,使 p(x)成立成立对有些对有些x0M,使,使p(x)成成立立对某个对某个x0M,使,使p(x)成成立
展开阅读全文