书签 分享 收藏 举报 版权申诉 / 17
上传文档赚钱

类型122三角形全等的判定(第一课时)课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:3615504
  • 上传时间:2022-09-26
  • 格式:PPT
  • 页数:17
  • 大小:93.80KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《122三角形全等的判定(第一课时)课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    122 三角形 全等 判定 第一 课时 课件
    资源描述:

    1、八年级八年级 上册上册12.2 三角形三角形全等的判定全等的判定 (第(第1课时)课时)学习目标:学习目标:1构建三角形全等条件的探索思路,体会研究几何构建三角形全等条件的探索思路,体会研究几何 问题的方法问题的方法2探索并理解探索并理解“边边边边边边”判定方法,会用判定方法,会用“边边边边 边边”判定方法证明三角形全等判定方法证明三角形全等3会用尺规作一个角等于已知角,了解作图的道理会用尺规作一个角等于已知角,了解作图的道理 学习重点:学习重点:构建三角形全等条件的探索思路,构建三角形全等条件的探索思路,“边边边边边边”判定判定 方法方法学习说明学习说明A=AAB=AB已知已知ABC AB

    2、C,找出其中相等的边与找出其中相等的边与 角:角:思考思考满足满足这六个条件可以保证这六个条件可以保证ABCABC吗?吗?创设情境,导入新知创设情境,导入新知ABCA BC B=BBC=BCC=CAC=AC追问追问1当满足一个条件时当满足一个条件时,ABC 与与ABC全等吗?全等吗?动脑思考,分类辨析动脑思考,分类辨析 思考思考如果只满足这些条件中的一部分,那么能保如果只满足这些条件中的一部分,那么能保证证ABC ABC吗?吗?思考思考如果只满足这些条件中的一部分,那么能保如果只满足这些条件中的一部分,那么能保证证ABC ABC吗?吗?两边两边 一边一角一边一角 两角两角两个条件两个条件 追问

    3、追问2当满足两个条件时当满足两个条件时,ABC 与与ABC全等吗?全等吗?动脑思考,分类辨析动脑思考,分类辨析 思考思考如果只满足这些条件中的一部分,那么能保如果只满足这些条件中的一部分,那么能保证证ABC ABC吗?吗?三边三边 三角三角 两边一角两边一角 两角一边两角一边三个条件三个条件 追问追问3当满足三个条件时,当满足三个条件时,ABC 与与ABC全等吗?满足三个条件时,又分为几种情况呢?全等吗?满足三个条件时,又分为几种情况呢?动脑思考,分类辨析动脑思考,分类辨析 画法画法:(1)画线段)画线段BC=BC;(2)分别以)分别以B、C为圆心,为圆心,BA、BC 为半径画弧,两为半径画弧

    4、,两 弧交于点弧交于点A;(3)连接线段)连接线段AB,A.动手操作,验证猜想动手操作,验证猜想 先任意画出一个先任意画出一个ABC,再画出一个,再画出一个ABC,使使AB=AB,BC=BC,AC=AC把画好的把画好的ABC剪下,放到剪下,放到ABC 上,它们全等吗?上,它们全等吗?边边边公理:边边边公理:三边对应相等的两个三角形全等简写为三边对应相等的两个三角形全等简写为“边边边边边边”或或“SSS”.”.动脑思考,得出结论动脑思考,得出结论思考作图的结果反映了什么规律?你能用文字语思考作图的结果反映了什么规律?你能用文字语言和符号语言概括吗?言和符号语言概括吗?在在ABC 与与 ABC中,

    5、中,ABC ABC(SSS)判断两个三角形全等的推理判断两个三角形全等的推理过程,叫做证明三角形全等过程,叫做证明三角形全等.AB=AB,AC=AC,BC=BC,用符号语言表达用符号语言表达:动脑思考,得出结论动脑思考,得出结论ABCA BC 证明:证明:D 是是BC 中点,中点,BD=DC 在在ABD 与与ACD 中,中,ABD ACD(SSS)应用所学,例题解析应用所学,例题解析例如图,有一个三角形钢架,例如图,有一个三角形钢架,AB=AC,AD 是是连接点连接点A 与与BC 中点中点D 的支架的支架求证:求证:ABD ACD CBDAAB=AC,BD=CD,AD=AD,作法:作法:(1)

    6、以点)以点O 为圆心,任意长为半径画弧,分别交为圆心,任意长为半径画弧,分别交OA,OB 于点于点C、D;已知:已知:AOB求作:求作:AOB=AOB用尺规作一个角等于已知角用尺规作一个角等于已知角应用所学,例题解析应用所学,例题解析ODBCA 作法:作法:(2)画一条射线)画一条射线OA,以点,以点O为圆心,为圆心,OC 长为半长为半 径画弧,交径画弧,交OA于点于点C;已知:已知:AOB求作:求作:AOB=AOB用尺规作一个角等于已知角用尺规作一个角等于已知角应用所学,例题解析应用所学,例题解析OCAODBCA 作法:作法:(3)以点)以点C为圆心,为圆心,CD 长为半径画弧,与第长为半径

    7、画弧,与第2 步中步中 所画的弧交于点所画的弧交于点D;已知:已知:AOB求作:求作:AOB=AOB用尺规作一个角等于已知角用尺规作一个角等于已知角应用所学,例题解析应用所学,例题解析ODCAODBCA 作法:作法:(4)过点)过点D画射线画射线OB,则,则AOB=AOB已知:已知:AOB求作:求作:AOB=AOB用尺规作一个角等于已知角用尺规作一个角等于已知角应用所学,例题解析应用所学,例题解析ODBCAODBCA 作法:作法:(1)以点)以点O 为圆心,任意长为半径画弧,分别交为圆心,任意长为半径画弧,分别交OA,OB 于点于点C、D;(2)画一条射线)画一条射线OA,以点,以点O为圆心,

    8、为圆心,OC 长为半长为半 径画弧,交径画弧,交OA于点于点C;(3)以点)以点C为圆心,为圆心,CD 长为半径画弧,与第长为半径画弧,与第2 步中步中 所画的弧交于点所画的弧交于点D;(4)过点)过点D画射线画射线OB,则,则AOB=AOB已知:已知:AOB求作:求作:AOB=AOB用尺规作一个角等于已知角用尺规作一个角等于已知角应用所学,例题解析应用所学,例题解析(1)本节课学习了哪些主要内容?)本节课学习了哪些主要内容?(2)探索三角形全等的条件,其基本思路是什么?)探索三角形全等的条件,其基本思路是什么?(3)“SSS”判定方法有何作用?判定方法有何作用?课堂小结课堂小结布置作业布置作业必做题:教科书习题必做题:教科书习题12.2第第1、9 题;题;选做题:如图,选做题:如图,ABC 和和EFD 中,中,AB=EF,AC=ED,点,点B,D,C,F 在一条直线上在一条直线上.(1)添加一个条件,由)添加一个条件,由“SSS”可判定可判定ABC EFD;(2)在()在(1)的基础上,)的基础上,求证:求证:ABEFABCDEF

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:122三角形全等的判定(第一课时)课件.ppt
    链接地址:https://www.163wenku.com/p-3615504.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库