书签 分享 收藏 举报 版权申诉 / 9
上传文档赚钱

类型初中数学竞赛辅导讲义及习题解答 第23讲 圆与圆.doc

  • 上传人(卖家):和和062
  • 文档编号:361237
  • 上传时间:2020-03-12
  • 格式:DOC
  • 页数:9
  • 大小:758KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《初中数学竞赛辅导讲义及习题解答 第23讲 圆与圆.doc》由用户(和和062)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    初中数学竞赛辅导讲义及习题解答 第23讲 圆与圆 初中 数学 竞赛 辅导 讲义 习题 解答 23 下载 _竞赛_数学_初中
    资源描述:

    1、第二十三讲 圆与圆 圆与圆的位置关系有外离、外切、相交、内切、内含五种情形,判定两圆的位置关系有如下三种方法: 1通过两圆交点的个数确定; 2通过两圆的半径与圆心距的大小量化确定; 3通过两圆的公切线的条数确定 为了沟通两圆,常常添加与两圆都有联系的一些线段,如公共弦、共切线、连心线,以及两圆公共部分相关的角和线段,这是解圆与圆位置关系问题的常用辅助线 熟悉以下基本图形、基本结论:【例题求解】【例1】 如图,Ol与半径为4的O2内切于点A,Ol经过圆心O2,作O2的直径BC交Ol于点D,EF为过点A的公切线,若O2D=,那么BAF= 度 思路点拨 直径、公切线、O2的特殊位置等,隐含丰富的信息

    2、,而连O2Ol必过A点,先求出D O2A的度数注:(1)两圆相切或相交时,公切线或公共弦是重要的类似于“桥梁”的辅助线,它可以使弦切角与圆周角、圆内接四边形的内角与外角得以沟通同时,又是生成圆幂定理的重要因素(2)涉及两圆位置关系的计算题,常作半径、连心线,结合切线性质等构造直角三角形,将分散的条件集中,通过解直角三角形求解 【例2】 如图,Ol与O2外切于点A,两圆的一条外公切线与O1相切于点B,若AB与两圆的另一条外公切线平行,则Ol 与O2的半径之比为( ) A2:5 B1:2 C1:3 D2:3 思路点拨 添加辅助线,要探求两半径之间的关系,必须求出COlO2 (或DO2Ol)的度数,

    3、为此需寻求CO1B、CO1A、BO1A的关系【例3】 如图,已知Ol与O2相交于A、B两点,P是Ol上一点,PB的延长线交O2于点C,PA交O2于点D,CD的延长线交Ol于点N (1)过点A作AECN交Oll于点E,求证:PA=PE; (2)连结PN,若PB=4,BC=2,求PN的长 思路点拨 (1)连AB,充分运用与圆相关的角,证明PAE=PEA;(2)PBPC=PDPA,探寻PN、PD、PA对应三角形的联系【例4】 如图,两个同心圆的圆心是O,AB是大圆的直径,大圆的弦与小圆相切于点D,连结OD并延长交大圆于点E,连结BE交AC于点F,已知AC=,大、小两圆半径差为2 (1)求大圆半径长;

    4、 (2)求线段BF的长; (3)求证:EC与过B、F、C三点的圆相切 思路点拨 (1)设大圆半径为R,则小圆半径为R-2,建立R的方程;(2)证明EBCECF;(3)过B、F、C三点的圆的圆心O,必在BF上,连OC,证明OCE=90注:本例以同心圆为背景,综合了垂径定理、直径所对的圆周角为直角、切线的判定、勾股定理、相似三角形等丰富的知识作出圆中基本辅助线、运用与圆相关的角是解本例的关键 【例5】 如图,AOB是半径为1的单位圆的四分之一,半圆O1的圆心O1在OA上,并与弧AB内切于点A,半圆O2的圆心O2在OB上,并与弧AB内切于点B,半圆O1与半圆O2相切,设两半圆的半径之和为,面积之和为

    5、 (1)试建立以为自变量的函数的解析式; (2)求函数的最小值 思路点拨 设两圆半径分别为R、r,对于(1),通过变形把R2+r2用“=R+r”的代数式表示,作出基本辅助线;对于(2),因=R+r,故是在约束条件下求的最小值,解题的关键是求出R+r的取值范围注:如图,半径分别为r、R的Ol 、O2外切于C,AB,CM分别为两圆的公切线,OlO2与AB交于P点,则: (1)AB=2; (2) ACB=Ol M O2=90;(3)PC2=PAPB; (4)sinP=; (5)设C到AB的距离为d,则 学力训练1已知:Ol和O2交于A、B两点,且Ol经过点O2,若AOlB=90,则A O2B的度数是

    6、 2矩形ABCD中,AB=5,BC=12,如果分别以A、C为圆心的两圆相切,点D在圆C内,点B在圆C外,那么圆A的半径r的取值范围 (2003年上海市中考题)3如图;Ol 、O2相交于点A、B,现给出4个命题: (1)若AC是O2的切线且交Ol于点C,AD是Ol的切线且交O2于点D,则AB2=BCBD; (2)连结AB、OlO2,若OlA=15cm,O2A=20cm,AB=24cm,则OlO2=25cm; (3)若CA是Ol的直径,DA是O2 的一条非直径的弦,且点D、B不重合,则C、B、D三点不在同一条直线上,(4)若过点A作Ol的切线交O2于点D,直线DB交Ol于点C,直线CA 交O2于点

    7、E,连结DE,则DE2=DBDC,则正确命题的序号是 (写出所有正确命题的序号) 4如图,半圆O的直径AB=4,与半圆O内切的动圆Ol与AB切于点M,设Ol的半径为,AM的长为,则与的函数关系是 ,自变量的取值范围是 5如图,施工工地的水平地面上,有三根外径都是1米的水泥管两两相切摞在一起,则其最高点到地面的距离是( ) A2 B C D6如图,已知Ol、O2相交于A、B两点,且点Ol在O2上,过A作Oll的切线AC交B Ol的延长线于点P,交O2于点C,BP交Ol于点D,若PD=1,PA=,则AC的长为( ) A B C D7如图,Ol和O2外切于A,PA是内公切线,BC是外公切线,B、C是

    8、切点PB=AB;PBA=PAB;PABOlAB;PBPC=OlAO2A上述结论,正确结论的个数是( ) A1 B2 C3 D4 8两圆的半径分别是和r (Rr),圆心距为d,若关于的方程有两个相等的实数根,则两圆的位置关系是( ) A一定内切 B一定外切 C相交 D内切或外切9如图,Ol和O2内切于点P,过点P的直线交Ol于点D,交O2于点E,DA与O2相切,切点为C(1)求证:PC平分APD; (2)求证:PDPA=PC2+ACDC; (3)若PE=3,PA=6,求PC的长10如图,已知Ol和O2外切于A,BC是Ol和O2的公切线,切点为B、C,连结BA并延长交Ol于D,过D点作CB的平行线

    9、交O2于E、F,求证:(1)CD是Ol的直径;(2)试判断线段BC、BE、BF的大小关系,并证明你的结论 11如图,已知A是Ol、O2的一个交点,点M是 OlO2的中点,过点A的直线BC垂直于MA,分别交Ol、O2于B、C (1)求证:AB=AC; (2)若Ol A切O2于点A,弦AB、AC的弦心距分别为dl、d2,求证:dl+d2=O1O2; (3)在(2)的条件下,若dld2=1,设Ol、O2的半径分别为R、r,求证:R2+r2= R2r212已知半径分别为1和2的两个圆外切于点P,则点P到两圆外公切线的距离为 13如图,7根圆形筷子的横截面圆半径为r,则捆扎这7根筷子一周的绳子的长度为

    10、14如图,Ol和O2内切于点P,O2的弦AB经过Ol的圆心Ol,交Ol于C、D,若AC:CD:DB=3:4:2,则Ol与O2的直径之比为( ) A2:7 B2:5 C2:3 D 1:3 15如图,Ol与O2相交,P是Ol上的一点,过P点作两圆的切线,则切线的条数可能是( )A1,2 B1,3 C1,2,3 D1,2,3,4 16如图,相等两圆交于A、B两点,过B任作一直线交两圆于M、N,过M、N各引所在圆的切线相交于C,则四边形AMCN有下面关系成立( ) A有内切圆无外接圆 B有外接圆无内切圆 C既有内切圆,也有外接圆 D以上情况都不对 17已知:如图,O与相交于A,B两点,点P在O上,O的

    11、弦AC切P于点A,CP及其延长线交P P于点D,E,过点E作EFCE交CB的延长线于F(1)求证:BC是P的切线; (2)若CD=2,CB=,求EF的长; (3)若k=PE:CE,是否存在实数k,使PBD恰好是等边三角形?若存在,求出是的值;若不存在,请说明理由 18如图,A和B是外离两圆,A的半径长为2,B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切A于点C,PD切B于点D (1)若PC=PD,求PB的长; (2)试问线段AB上是否存在一点P,使PC2+PD2=4?,如果存在,问这样的P点有几个?并求出PB的值;如果不存在,说明理由; (3)当点F在线段AB上运动到某处

    12、,使PCPD时,就有APCPBD 请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少,或PC、PD具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与OB的位置关系,证明你的结论 19如图,D、E是ABC边BC上的两点,F是BA延长线上一点,DAE=CAF (1)判断ABD的外接圆与AEC的外接圆的位置关系,并证明你的结论;(2)若ABD的外接圆半径是AEC的外接圆半径的2倍,BC=6,AB=4,求BE的长 20问题:要将一块直径为2cm的半圆形铁皮加工成一个圆柱的两个底面和一个圆锥的底面 操作:方案一:在图甲中,设计一个使圆锥底面最大,半圆形铁皮得以最充分利用的方案(要求,画示意图) 方案二;在图乙中,设计一个使圆柱两个底面最大,半圆形铁皮得以最充分利用的方案(要求:画示意图); , 探究:(1)求方案一中圆锥底面的半径; (2)求方案二中圆锥底面及圆柱底面的半径; (3)设方案二中半圆圆心为O,圆柱两个底面的圆心为O1、O2,圆锥底面的圆心为O3,试判断以O1、O2、O3、O为顶点的四边形是什么样的特殊四边形,并加以证明 参考答案 9

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:初中数学竞赛辅导讲义及习题解答 第23讲 圆与圆.doc
    链接地址:https://www.163wenku.com/p-361237.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库