书签 分享 收藏 举报 版权申诉 / 14
上传文档赚钱

类型第6章 平面直角坐标系学案.doc

  • 上传人(卖家):和和062
  • 文档编号:361068
  • 上传时间:2020-03-12
  • 格式:DOC
  • 页数:14
  • 大小:501.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《第6章 平面直角坐标系学案.doc》由用户(和和062)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    第6章 平面直角坐标系学案 平面 直角 坐标系 下载 _七年级上册(旧)_人教版(2024)_数学_初中
    资源描述:

    1、课题:6.1.1 有序数对【学习目标】1 知道有序数对的意义,感受有序数对在确定点的位置中的作用;2 会用有序数对表示实际生活中的物体的位置。【活动过程】活动一 认识有序数对1. 自学课本P39-40页,回答下列问题: (1) 进入电影院看电影你是怎么找到自己的座位的?(2) 如果把座位表中的“3排5列”简记作(3,5),你能确定自己的座位和其他同学的座位的记法吗?(3) 把(3,5)中的两个数据的位置调换一下,是否还指原来的位置呢?你发现了什么?(4)什么叫有序数对; 2. 小组内交流用有序数对表示点要注意哪些问题?活动二 感受平面内的点与有序数对之间的一一对应关系1. 完成课本P40页的练

    2、习,然后小组交流;2. 下表中无序排列的汉字,小明拿到一张写有密码的字条,你能帮忙破译吗?(约定:字条上面括号中的两个数,前面的表示所在列,后面的表示所在行。 内容是: 完成后展示你的成果。3. 如图,如马所处的位置表示为(2,3). (1) 你能表示出象的位置吗?(2) 写出马的下一步可以到达的位置。(小组内讨论,并展示结果)课堂小结:1.为什么要用有序数对表示点的位置,没有顺序可以吗?2.小组交流学习体会或收获【检测反馈】1. 将电影票上的“7排6座”记作(7,6),那么(1)10排8座可以表示为_;(2)(12,4)表示的意义是_.2. 用数字1.2.3可以组成_对有序数对。3如图所示,

    3、是某城市植物园周围街巷的示意图,A点表示经1路与纬2路的十字路口,B点表示经3路与纬5路的十字路口,如果用(1,2)(2,2)(3,2)(3,3)(3,4)(3,5)表示由A到B的一条路径,那么你能用同样的方式写出由A到B的尽可能近的其他几条路径吗?课题:6.1.2 平面直角坐标系(第一课时)【学习目标】1. 认识平面直角坐标系,并能正确画出平面直角坐标系;2. 感知平面直角坐标系内点的坐标的意义,会根据坐标确定点和由点求得坐标。【活动过程】活动一 认识平面直角坐标系自学课本P40-42页,回答下列问题:1. 什么叫做数轴? 数轴有哪几个要素?2写出数轴上各点的坐标3结合上节所学内容思考如何确

    4、定平面内某点的位置?(小组内讨论并展示)4. 什么是平面直角坐标系? 5. 如何建立平面直角坐标系6. 画出一个平面直角坐标系7.小组内交流,并讨论画平面直角坐标系要注意哪些问题,小组代表在全班展示。活动二 感知平面直角坐标系内点的坐标1. 平面直角坐标系内点的坐标的意义是什么? 2. 写出图中A,B,C,D,E,F,O各点的坐标。3. 在下面的平面直角坐标系中,描出下列各点:A(4,3),B(2,3),C(4,l),D(2,一2),E(1.5,0),F(0,25)。 小组交流,全班展示。课堂小结:通过本课学习你有哪些收获?全班交流。 【检测反馈】1.在平面直角坐标系中,点的位置在( )A第一

    5、象限 B第二象限 C第三象限 D第四象限2.若点A(m+2,m-5)在y轴上,则点A的坐标为_.3.在长方形ABCD中,A点.点.点坐标分别是(,),(,),(,)则点坐标为_.4.写出图中A.B.C.D点的坐标。 课题:课题:6.1.2 平面直角坐标系(第二课时)【学习目标】1.能灵活地正确建立平面直角坐标系;2.通过探索认识平面直角坐标系各象限内点的坐标的规律。【活动过程】活动一 探索平面直角坐标系各象限内点的坐标的规律1.自学课本P42页,画一个平面直角坐标系并了解平面直角坐标系各象限的分布;2在四个象限内各取一个点,探索一下坐标的规律; 若x0,y0 则点P(x , y)在 ;若x0,

    6、y0 则点P(x , y)在 若x0,y0 则点P(x , y)在 ;若x0,y0 则点P(x , y)在 (组内交流讨论,全班展示)3. 思考:有没有不属于任何一个象限内的点; 结论: (组内讨论交流全班展示结论)4. 原点O的坐标是多少?x轴和y轴上的点有何规律?若x=0,y=0 则点P(x , y)在 若x=0,y0 则点P(x , y)在 ;若x0,y=0 则点P(x , y)在 结论: (组内讨论交流,并全班展示结论)活动二 体验用平面直角坐标系各象限内点的坐标的规律的运用1.完成课本P43页探究(小组内交流)2.完成课本P44-45页 第2.4.5.6.8题(完成后交小组长批阅,有

    7、错误的同学请小组其他同学帮助找出错误原因)【检测反馈】1.在平面直角坐标系中,点(1,21)一定在( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限2. 点在第三象限,点到轴的距离是5,到轴的距离是3,则点的坐标是( ). (A)(3,5) (B)(5,3) (C)(3,5) (D)(3,5)3. 已知点(0,0,),(0,2),(3,0),(0,4),(3,1),其中在轴上的点的个数是( ). (A)0 (B)1 (C)2 (D)34.如果点A(,)在第二象限,则点B(,)在第_象限5.已知线段在轴上,点的坐标为(3,0),并且=5,则点的坐标为_.6.如图是传说中的一个

    8、藏宝岛图,藏宝人生前用直角坐标系的方法画了这幅图,现今的寻宝人没有原来的地图,但知道在该图上有两块大石头(2,1),(8,2),而藏宝地的坐标是(6,6),试设法在地图上找到藏宝地点.B(8,2)A(2,1)藏宝岛海洋课题:6.2.1 用坐标表示地理位置【学习目标】1. 感知用平面直角坐标系来表示地理位置的意义;2. 学会用平面直角坐标系表示实际生活中的一些地理位置。【活动过程】活动一 感知用平面直角坐标系来表示地理位置1.自学课本P49-50页用平面直角坐标系来表示地理位置的方法:(小组内交流)2根据以下条件画一幅示意图,指出学校和小刚家.小强家.小敏家的位置小刚家:出校门向东走150米,再

    9、向北走200米小强家:出校门向西走200米,再向北走350米,最后再向东走50米小敏家:出校门向南走100米,再向东走300米,最后向南走75米如何建立平面直角坐标系呢?以何参照点为原点?如何确定x轴.y轴?如何选比例尺来绘制区域内地点分布情况平面图?(组内讨论交流)选取学校所在位置为原点,并以正东.正北方向为x轴.y轴的正方向有什么优点? 3通过以上学习概括一下利用平面直角坐标系绘制区域内一些地点的分布情况平面图的过程是什么?有哪些注意事项(小组内讨论并展示)活动二 会用平面直角坐标系表示实际生活中的地理位置。1.春天到了,初一(4)班组织同学到人民公园春游,张明.王丽.李华三位同学和其他同

    10、学走散了,同学们已经到了中心广场,而他们仍在牡丹园赏花,他们对着景区示意图在电话中向老师告诉了他们的位置张明:“我这里的坐标是(300,300)”王丽:“我这里的坐标是(200,300)”李华:“我在你们东北方向约420米处”实际上,他们所说的位置都是正确的你知道张明和王丽同学是如何在景区示意图上建立的坐标系吗?你理解李华同学所说的“东北方向约420米处”吗?用他们的方法,你能描述公园内其他景点的位置吗?让学生分别画出直角坐标系,标出其他景点的位置 (小组内交流后代表在全班展示思考的过程)【检测反馈】1.BAC如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(40

    11、,30)表示,那么(10,20)表示的位置是( )A点A B点B C点C D点D 2.如图是某地行政区域图,图中A地用坐标表示为(1,0),B地用坐标表示为(-3,-1),那么C地用坐标表示为 . 3.课本P53页 习题6.2 复习巩固 1.2. 课题:6.2.2 用坐标表示平移(1)【学习目标】1. 感知坐标变化与图形平移;2. 能利用点的平移规律将平面图形进行平移;3. 会根据图形上点的坐标的变化,来判定图形的移动过程【活动方案】活动一 感知感知坐标变化与图形平移1.自学课本P51-52页,完成下面探究:(1)将点A(-2,-3)向右平移5个单位长度得到点B,在图上标出这个点,并写出它的坐

    12、标;(2)将点B向上平移5个单位长度得到点C,在图上标出这个点,并写出它的坐标;(3)将点C向右平移4个单位长度得到点D,在图上标出这个点,并写出它的坐标;(4)将点D向下平移4个单位长度得到点,在图上标出这个点,并写出它的坐标;2通过刚才的探究你发现了什么?(概括并组内交流)3再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?活动二感知坐标变化与图形平移之间的规律1.如图,三角形ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2)将三角形ABC三个顶点的横坐标后减去6,纵坐标不变,分别得到点A1.B1.C1,依次连接A1.B1.C1各点,所得三角形A1B1C1与三

    13、角形ABC的大小.形状和位置上有什么关系?将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2.B2.C2,依次连接A2.B2.C2各点,所得三角形A2B2C2与三角形ABC的大小.形状和位置上有什么关系?2.通过刚才的探究你又发现了什么?(归纳.讨论.展示)【检测反馈】1.将点A将点A(-2,3)向右平移4个单位长度,再将它向下平移5个单位长度得到的点B的坐标为_;2.将线段AB的两个端点A(2,1),(,-)向左平移3个单位长度,那么平移后两个端点坐标分别是_;3.完成课本P54页 3,4. 课题:6.2.2 用坐标表示平移(2)【学习目标】1. 能熟练利用点的平移规律将平面

    14、图形进行平移;3. 会根据图形上点的坐标的变化,正确判定图形的移动过程【活动方案】活动一 利用点的平移规律将平面图形进行平移;1独立完成下列题目1ABC中,A(4,2),B(1,3),C(2,1),将ABC先向右平移4个单位长度,再向上平移3个单位长度,则对应点A1,B1,C1的坐标分别为_,_,_2,。已知点A(1,0),B(2,3),C(0,2),D(3,1),则线段AB和线段CD的大小是 ( )AABCD BABCDCABCD DAB2CD小组交流解题的过程,并交流如何利用点的平移规律将平面图形进行平移活动二进一步感知坐标变化与图形平移之间的规律.如图,三角形ABC三个顶点坐标分别是A(

    15、4,3),B(3,1),C(1,2)将三角形ABC三个顶点的横坐标后减去6,纵坐标不变,分别得到点A1.B1.C1,依次连接A1.B1.C1各点,所得三角形A1B1C1与三角形ABC的大小.形状和位置上有什么关系?Ox12345678-9-8-7-6-5-4-3-2-1y654321-1-2-3-4-5-6ABCDEF将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2.B2.C2,依次连接A2.B2.C2各点,所得三角形A2B2C2与三角形ABC的大小.形状和位置上有什么关系?小组交流解题的过程。【检测反馈】1.将点A将点A(-2,3)向右平移5个单位长度,再将它向上平移3个单

    16、位长度得到的点B的坐标为_;.2。已知坐标平面内三点D(5,4),E(2,4),F(4,2),那么DEF的面积为( )A3平方单位 B5平方单位C6平方单位 D7平方单位3.将线段AB的两个端点A(2,1),(,-)向左平移4个单位长度,再向上平移5个单位长度,那么平移后两个端点坐标分别是_;课题:复习【学习目标】1.回顾本章知识2梳理相关方法【活动方案】活动一 复习本章知识阅读课本P58内容1交流学习知识图的体会2完成课本(二)回顾与思考三个问题活动二 体会知识的应用独立解答下列题目:OABCDxy(第2题)1 如上图中四边形ABCD是平行四边形,下列说法正确的是 ( )AA与D的横坐标相同

    17、BC与D的横坐标相同CB与C的纵坐标相同DB与D的纵坐标相同2 下列说法中,正确的是 ( )A平面直角坐标系是由两条互相垂直的直线组成的B平面直角坐标系是由两条相交的数轴组成的C平面直角坐标系中的点的坐标是唯一确定的D在平面上的一点的坐标在不同的直角坐标系中的坐标相同3 线段CD是由线段AB平移得到的点A(1,4)的对应点为C(4,7),则点B(4,1)的对应点D的坐标为 ( )A(2,9) B(5,3) C(1,2) D(9,4)412点P在第三象限内,它到x轴的距离是2,到y轴的距离是3,则点P的坐标是 .以小组为单位交流解题的方法及体会【检测反馈】1在直角坐标系内,把点P(5,2)先向左

    18、平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是 2 如上图右是在方格纸上画出的小旗图案,若用(0,0)ABC(第3题)表示A点,(0,4)表示B点,那么C点的位置可表示为 ( )A(0,3) B(2,3) C(3,2) D(3,0)xABC(第2题)DEFyO3如图,三角形DEF是由三角形ABC平移得到的,点A(1,4)的对应点为点D(1,1),点B的坐标为(2,1),点C的坐标为(4,5),分别求出B,C的对应点E,F的坐标4在平面直角坐标系中描出下面各点:A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(5,7),G(5,0)(1)A点到原点O的距离是_;(2)将点C沿x轴的负方向平移6个单位,它与哪个点重合;(3)连接CE,则直线CE与y轴是什么关系?(4)点F分别到x、y轴的距离是多少?14

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:第6章 平面直角坐标系学案.doc
    链接地址:https://www.163wenku.com/p-361068.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库