模式1:有理数 教案.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《模式1:有理数 教案.doc》由用户(和和062)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 模式1:有理数 教案 模式 有理数 下载 _七年级上册(旧)_人教版(2024)_数学_初中
- 资源描述:
-
1、第一章 有理数正数和负数目标预设:一、知识与能力借助生活中的实例会判断一个数是正数还是负数,能用正负数表示具有相反意义的量二、过程与方法、 过程:通过实例引入负数,指导学生会识别正负数及其表示法,能应用正负数表示具有相反意义的量。、 方法:讨论法、探究法、讲授法、观察法。三、情感、态度、价值观乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用教学重难点:一、重点:理解正数和负数的概念,判断一个数是正数还是负数,应用正负数表示具有相反意义的量二、难点:负数的意义,理解具有相反意义的量。 教学准备:带有负数的实例若干预习导学:在生活、生产、科研中,经常遇到数的表示与数的运算的
2、问题。例如,天气预报2003年11月某天北京的温度为-33,它的确切含义是什么?这一天北京的温差是多少?有三个队参加的足球比赛中,红队胜黄队(41),黄队胜蓝队(10),蓝队胜红队(10),如何确定三个队的净胜球数与排名顺序?某机器零件的长度设计为100mm,加工图纸标注的尺寸为1000.5(mm),这里的0.5代表什么意思?合格产品的长度范围是多少?(问题1-3友情提示、全班交流、教师点评) 教学过程:一、 创设情景,谈话引入在小学里我们已经学过哪些类型的数(自然数和分数),它们都是由实际需要而产生的,由记数、排序产生数1,2,3,由表示“没有”“空位”,产生数0,由分物、测量产生分数,但在
3、预习导学中表示温度、净胜球数、加工允许误差时用到数:3, 3, 2, -2, 0, +0.5, -0.5。二、 精讲点拨,质疑问难这里出现了一种新数:-3,-2,-0.5。在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,小于设计尺寸0.5mm,像-3,-2,-0.5这样的数(即在以前学过的0以外的数前面加上负号“”的数)叫做负数。而3,2,+0.5在问题中分别表示零上3摄氏度,净胜2球,大于设计尺寸0.5mm,它们与负数具有相反的意义。我们把这样的数(即以前学过的0以外的数)叫做正数数字前的“”,“”分别读“正”,“负”。正数前的“”可加也可省略。数0既不是正数,也不是负数。把0以外的
4、数分成正数和负数,表示具有相反意义的量。三、 课堂活动,强化训练小组讨论:生活中你们见过带“”的数吗?(代表发言,教师适当表扬学生)例1:下面哪些数是正数,哪些是负数。(学生独立思考,个别回答,教师点评)-11, 4.8, +73, -2.7, -, -8.12, 100 例2:在知识竞赛中,如果用+10分表示加10分,那么扣20分怎样表示?(个别回答,学生点评)练习:见书本P5练习(学生独立完成,教师巡视,个别指导)四、 延伸拓展,巩固内化例3:(1)一个月内,小明体重增加2千克,小华体重减少一千克,小强体重没变化,写出他们这个月的体重增长值(减少值呢)?(小组讨论,代表发言,教师点评)(2
5、)2001年下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%, 德国增长1.3%法国减少2.4%, 英国减少3.5%意大利增长0.2%, 中国增长7.5%写出这些国家2001年商品进出口总额的增长率。(学生独立思考,教师点评)(3)一潜水艇所在高度为-50米,一条鲨鱼在潜水艇上方10米处,鲨鱼所在的高度是多少?(4)向北走-20米所表示的意思是什么?(5)某银行职员在一天内经办了五笔业务:取出10000元,存进25000元,取出5000元,存进8000元。求该职员在一天内使银行变化了多少元?(6)在一次数学竞赛中,成绩在120分以上为优秀120分到119分为合格,100分以下的不合
6、格。老师将他班上的十位竞赛成绩简记为:-10、-5、0、-28、+10、20、-3、+15、+8、-23,则这十位同学中优秀的有几名?(7)判断下列各题:正数就是自然数既不是正数也不是负数的数不存在带正号的数为正数带负号的数为负数零是最小的整数-a是负数练习:见书本6(独立完成,教师巡视,适时指导,得出结论)五、 布置作业,当堂反馈见书本7当堂反馈教后反思1. 2.1有理数目标预设一、知识与能力:1、能把给出的有理数按要求分类.2、了解数0在有理数分类中的应用.二、过程与方法:经历从实际中抽出数学模型,从数形结合两个侧面理解问题;并能选择处理数学信息,做出大胆猜测.三、情感态度与价值观:体会数
7、学知识,以现实世界的联系,体现数学充满着探索性. 重点和难点:有理数的分类方法 教学准备:温度计 预习导学:1、观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的3个数,你能写出第2002个数是什么吗?1,1、1、1、1、1、1、1、2,4,6,8,10,12,14,16,2、填空:甲乙两人同时从A地出发,如果甲向南走48m记作48m,则乙向北走32m记作;这时甲、乙两人相距m.教学过程一、创设情景,谈话导入:1、教师问:你所知道的数可以分成哪些种类?你是按照什么划分的?2、0.1、0.5、5.32、150.25等为什么被划为分数?我们学过的小数都是分数吗?(友情提示,全班交流,教
8、师点评)二、精讲点拨,质疑问难1、给出新的整数,分数的概念:引进负数后,数的范围扩大了.整数包括:正整数,负整数和零.同样分数包括:正分数,负分数.即 整数?分数?2、给出有理数概念:整数与分数统称为有理数.即有理数也可分为有理数3、正数和零统称为非负数.和统称为非正数.4、有理数都可表示成的形式.三、课堂活动,强化训练例1、 下列各数是正数还是负数,整数还是分数?5、8、8.4、0(小组点评,学生回答,教师点评)例2、将下列各数填入表示集合的在括号里:5、0.3、8848、392、0、2、213.4正整数集合:负数集合:整数集合:分数集合:(畅所欲言,学生点评,得出结论)学生练习:1、书本P
9、10第1题.2、把有理数6.4、9、10、0.021、1、7、8.5、25、10按两种标准分类.(教师巡视,发现问题,个别指导)四、延伸拓展,巩固内化1、 填空:在数字3、0.5、52、0.8、239%、1中,在负数集合里的数是 ,在分数集合中的数是.整数和分数合起来叫作;正分数和负分数合起来叫作.最大的负整数为,最小的正整数 ,最小自然数是 。观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的3个数,你能写出第2001个数是什么吗?1,.第2001个数是.2、选择题: 下面说法中正确的是()、正数和负数统称有理数、0既不是整数,又不是分数、零是最小的数、整数和分数统称有理数 下列
10、各数中一定是有理数的是()、3、一组数:4,1.7,0,99,8,1.6中,整数有个,负分数有个,则()、的大小不能确定3、 下列各数-、0、填入相应的括号中正数集合 ,负数集合 正分数集合 ,非负数集合 小数集合 4、 根据你对集合圈的理解填下图分数集合 正数集合五、布置作业书P10及当堂反馈教后反思1、21 数轴 目标预测一、知识与能力通过与温度计的类比,认识数轴,会用数轴上的点表示有理数.能利用数轴比较有理数的大小.二、过程与方法经历从实际中抽出数学模型,从数形结合两个侧面理解问题,并能选择处理数学信息,做出大胆猜测.初步培养学习运用所学知识和技能解决问题,发展应用意识.三、情感态度与价
11、值观体会数学知识,以现实世界的联系,体现数学充满着探索性.重点和难点重点能将已知数在数轴上表示出来.说出数轴上已知点所表示的数.难点利用数轴比较有理数大小.教学准备直尺三角板温度计预习导学问题:在一条东西向的马路上,有一个汽车站,汽车站东3和7.5处有一棵柳树和一棵杨树,汽车站西3和4.8处有一棵槐树和一根电线杆,试画图表示这一情景.思考:怎样用数简明地表示这些树、电线杆、汽车站的相对位置关系(方向、距离)?教学过程一、 创设情景,谈话导入首先提问一个问题:有理数包括哪些数?0是正数还是负数?再让全班同学讨论一个问题;在我们日常生活中,你能举出一些用来表示物品的数量吗?通过讨论,让学生明白知识
12、是从实践中得到的,它与我们的生活息息相关;再有,数除了可以用符号表示外,还有其他表示方法,从而引出新课:数轴.在同学们讨论的基础上,得出可以引出数轴概念的实例很多,如温度计、直尺、弹簧秤等等,但我认为,温度计是建立数轴的最好模型,它与数轴最为接近.二、 精讲点拨,质疑问难1、给出数轴定义,方法如下: 画一条水平的直线,在这条直线上任取一点作为原点,用这点表示0 通常规定直线上从原点向右为正方向,从原点向左为负方向. 选取适当的长度为单位长度,在直线上,从原点向右,每一个长度单位取一点,依次为1,2,3,从原点向左,每隔一个单位取一点,依次表示为1,2,3,如图:分数或小数也可以用数轴上的点表示
13、.例如从原点向右3.5个单位长度的点表示小数3.5,从原点向左0.5个单位长度的点表示分数.定义:规定了原点、正方向和单位长度的直线叫做数轴.2、一般地,设是一个正数,则数轴上表示数的点在原点的边,与原点的距离是个单位长度;表示数的点在原点的边,与原点的距离是个单位长度.三、 课堂活动,强化训练例1、画一个数轴,并在数轴上表示下列各数的点:1,5,2.5,4,0 (全班交流,教师点评)教师问:在数轴上,已知一点表示数5,如果数轴上的原点不选在原来的位置,改选在另一个位置上,那么对应的数是否还是5?如果单位长度改变呢?如果直线的正方向改变呢?(小组讨论,代表发言,学生点评)由此可得数轴三要素:,
14、缺一不可.例2、指出数轴上、各点分别表示什么数?(独立思考,发现新知)例3、画一条数轴,并画出分别表示1000,2000,5000,3000的各点.(畅所欲言,学生点评,得出结论)画一条数轴,并画出分别表示0.5,0.1,0.75的各点.(畅所欲言,学生点评,得出结论)四、 延伸拓展,巩固内化例4、有理数的大小比较:在数轴上表示的两个数,右边的数总比左边的数大.正数都大于0,负数都小于0,正数大于一切负数.(1)、比较3,0,2的大小.(独立思考,发现新知).(2)、用“”号把下列各数连结起来:3.14,2,7,6.28(小组讨论,积极探索,教师及时点评)学生练习:(1)书12页,练习.(2)
15、在数轴上表示下列各数并用小于号连接:5、-3、0、(3) 数轴上离开原点三个单位的数为: 比-4大的数有几个 ,比-4大的负整数有 几个 ,依次为 。数轴上的点A、B、C、D分别表示数a、b、c、d,已知点A在点B左侧,点D在B、C之间,则a、b、c、d从小到大排列为 如果数轴上A到原点的距离为3,点B 到原点的距离为5 ,那么A、B两点距离为 。五、 布置作业:书P17:2及当堂反馈.教后反思1、23 相反数 目标预设一、 知识与能力借助数轴理解相反数概念,知道互为相反数的一对数在数轴上位置关系。会求一个有理数的相反数。二、 过程与方法经历从实际中抽出数学模型,从数形结合两个侧面理解问题,并
16、能选择处理数学信息,做出大胆猜测。三、 情感态度与价值观使学生能积极参与数学学习活动,对数学有好奇心和求知欲。 重点与难点重点理解相反数的意义,理解相反数的代数意义与几何意义的一致性。难点多重符号的化简。 教学准备多媒体教学平台 教学过程一、 创设情景,谈话导入1、画一个数轴,并在画的数轴上找出表示5、5、3、3、1、1各数的点来,并要标上字母。(独立思考,发现新知)2、观察上题中的5、5、3、3、1、1,发现这三对数有什么特点?(小组讨论,代表发言,学生点评)3、观察上题中的5、5、3、3、1、1,发现这三对数在数轴上的对应点的位置有什么特点?(小组讨论,代表发言,学生点评)二、 精讲点拨,
17、质疑问难给出相反数定义1、由以上几个问题,得出:像这样,只有符号不同的两个数,我们说它们互为相反数。(相反数的代数意义)2、也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为相反数。(这个概念很重要,它帮助我们直观地看出相反数的意义,所以有的书上称它为相反数的几何意义)3、特别地,0的相反数仍是0。这是因为0既不是正数,也不是负数,它到原点的距离就是0,这是相反数等于它本身的唯一的数。三、 课堂活动,强化训练例1、分别写出9与7的相反数。指出2.4与各是什么数的相反数。例1由学生自己完成。在学习有理数时我们就指出字母可以表示一切有理数,那么数的相反数如何表示?引导学生观察例1
18、,自己得出结论:数的相反数是,即在一个数前面加上一个负号即是它的相反数。1、 当7时,7,7的相反数是7;2、 当5时,(5),读作“5的相反数”,5的相反数是5,因此,(5)53、 当0时,0,0的相反数是0,因此,00观察2,(5)表示5的相反数,那么(8),(4),()各表示什么意思?引导学生回答:(8)表示8的相反数,(4)表示4的相反数,()表示的相反数例2、简化(3),(4),(6),(5)的符号。能自己总结出简化符号的规律吗?(小组讨论,积极探索,教师及时点评)括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号外的符号与括号内的符号异号,则简化符号后的数是负数;课堂练习
19、:1、填空:1.3的相反数是;3的相反数是;的相反数是1.7;的相反数是。(4)是的相反数;(7)是的相反数。2、简化下列各数的符号:(8),(9),(6),(7),(5)3、下列两对数中,哪些是相等的数?哪对互为相反数?(8)与(8);(8)与(8)。四、 延伸拓展,巩固内化例3、化简:(1)(5),(2)- - 例4、若:0,比较,的大小。(用“”连接)(小组讨论,积极探索,教师及时点评)思考1、数轴上与原点的距离是2的点有个,这些点表示的数是,它们互为。2、数轴上表示相反数的两个点的原点有什么关系?(独立思考,发现新知,得出结论)3、下列判断正确的是( )A、 符号不同的两个数是互为相反
20、数 B、 相反数是不相等的两个数C、 互为相反数的两个数相加的和为零D、 一个数相反数一定是负数练习:1、点C(4.5)与原点之间的距离是。2、点A(3)与点C(4.5)之间的距离是。3、=-1,求a 的相反数4、m+1的相反数为 ,m-1的相反数为 。5、已知:a+b=0,b+c=0,c+d=0,d+f=0,探究a、b、c、d四个数中,哪些互为相反数?哪些数相等?五、 布置作业P13,P17:3及当堂反馈教后反思1、24绝对值(二) 目标预设一、知识与能力:会利用绝对值比较两负数的大小二、过程与方法:通过应用绝对值解决实际问题,体会绝对值的意义.三、情感态度与价值观:使学生能积极参与数学学习
展开阅读全文