《机械工程控制基础》第三章系统时间响应分析课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《机械工程控制基础》第三章系统时间响应分析课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机械工程控制基础 机械工程 控制 基础 第三 系统 时间 响应 分析 课件
- 资源描述:
-
1、1第三章第三章 系统的时间响应分析系统的时间响应分析 时间响应及其组成时间响应及其组成 典型输入信号典型输入信号 一阶系统一阶系统 二阶系统二阶系统 系统误差分析与计算系统误差分析与计算 利用利用MATLABMATLAB分析时间响应分析时间响应习题:习题:3.2 3.7 3.10 3.12 3.15 3.18*2引言引言 在建立系统的数学模型(在建立系统的数学模型(微分方程微分方程与与传递函数传递函数)之)之后,就可以采用不同的方法,通过系统的数学模型来分后,就可以采用不同的方法,通过系统的数学模型来分析系统的特性,析系统的特性,时间响应分析时间响应分析(也称之为:(也称之为:时域分析时域分析
2、)是重要的方法之一。是重要的方法之一。时域分析时域分析给系统施加一输入信号,通过研究系给系统施加一输入信号,通过研究系统的输出(响应)来评价系统的性能。统的输出(响应)来评价系统的性能。如何评价一个系统性能的好坏,有一些动态和稳态如何评价一个系统性能的好坏,有一些动态和稳态的的性能指标性能指标可以参考。可以参考。*33.1 时间响应及其组成时间响应及其组成例例1 1按照微分方程解的结构理论,这一非齐次常微分方程的解由两按照微分方程解的结构理论,这一非齐次常微分方程的解由两部分组成,即:部分组成,即:是与其对应的齐次微分方程的通解是与其对应的齐次微分方程的通解是其一个特解是其一个特解123*43
3、.1 时间响应及其组成时间响应及其组成式代入式代入 式得:式得:3把把1化简得:化简得:于是于是 式得完全解为:式得完全解为:14为了求得系数为了求得系数A,B现将上式对现将上式对t求导。求导。代入 式即可得到系数A、B。如下:455*53.1 时间响应及其组成时间响应及其组成由输入引起由输入引起的自由响应的自由响应由输入引起由输入引起的强迫响应的强迫响应系统的初态为系统的初态为0,仅有输,仅有输入引起的响应。入引起的响应。由初始条件引起的由初始条件引起的自由响应自由响应*6此方程的解为通解此方程的解为通解 (即自由响应)与特解(即自由响应)与特解 (即强迫响应)所组成,即:(即强迫响应)所组
4、成,即:3.1 时间响应及其组成时间响应及其组成*73.1时间响应及其组成时间响应及其组成这是因为:这是因为:在定义系统的传递函数时,由于已指明了系统的在定义系统的传递函数时,由于已指明了系统的初态为零,故取决于系统的初态的零输入响应为零。初态为零,故取决于系统的初态的零输入响应为零。*83.1时间响应及其组成(时间响应及其组成(瞬态响应与稳态响应瞬态响应与稳态响应)*93.1时间响应及其组成时间响应及其组成(瞬态响应与稳态响应瞬态响应与稳态响应)3.1时间响应及其组成时间响应及其组成(瞬态响应与稳态响应瞬态响应与稳态响应)*103.1时间响应及其组成时间响应及其组成(瞬态响应与稳态响应瞬态响
5、应与稳态响应)*113.1时间响应及其组成时间响应及其组成(瞬态响应与稳态响应瞬态响应与稳态响应)*123.1时间响应及其组成时间响应及其组成(瞬态响应与稳态响应瞬态响应与稳态响应)*133.1时间响应及其组成时间响应及其组成(瞬态响应与稳态响应瞬态响应与稳态响应)*143.2 典型输入信号典型输入信号 控制系统性能的评价分为动态性能指标和稳态性控制系统性能的评价分为动态性能指标和稳态性能指标两大类,为了求解系统的时间响应必须了解系能指标两大类,为了求解系统的时间响应必须了解系统输入信号(即外作用)的解析表达式(也就是统输入信号(即外作用)的解析表达式(也就是确定确定性信号性信号),然而,在一
6、般情况下,控制系统的外加输),然而,在一般情况下,控制系统的外加输入信号具有随机性而无法预先确定,因此需要选择若入信号具有随机性而无法预先确定,因此需要选择若干确定性信号作为典型输入信号。干确定性信号作为典型输入信号。何谓确定性信号呢?何谓确定性信号呢?就是其变量和自变量之间的就是其变量和自变量之间的关系能够用某一确定性函数描述的信号。关系能够用某一确定性函数描述的信号。*15典型输入信号典型输入信号 1.1.阶跃函数阶跃函数 000)(1)(tttRtxi式中式中,R为常数为常数,当当R 1时时,xi(t)=1(t)为单位阶跃函数,其为单位阶跃函数,其拉氏变换的表达式为:拉氏变换的表达式为:
7、3.2 典型输入信号典型输入信号阶跃函数的时域表达式为阶跃函数的时域表达式为:*163.2 典型输入信号典型输入信号2.斜坡函数斜坡函数(等速度函数等速度函数)斜坡函数,也称等速度函数(见图),其时域表达式为 000)(ttRttxi 式中式中,R为常数。为常数。当当R1,xi(t)=t为单位斜坡函数为单位斜坡函数。其拉氏变换的表达式为:其拉氏变换的表达式为:通过观察,我们可以发现通过观察,我们可以发现 因为因为dx(t)/dt=R,所以阶所以阶跃函数为斜坡函数对时间的导数。跃函数为斜坡函数对时间的导数。*173.2 典型输入信号典型输入信号3.3.抛物线函数(等加速度函数)抛物线函数(等加速
8、度函数)抛物线函数(见图)的时域表达式为 0002)(2ttRttxi式中,式中,R为常数。当为常数。当R1时时,xi(t)=t2/2为单位加速度函数。为单位加速度函数。其拉氏变换的表达式为:其拉氏变换的表达式为:通过观察,我们可以发现通过观察,我们可以发现因为因为dxi(t)/dt=Rt,所以斜坡所以斜坡函数为抛物线函数对时间的导数。函数为抛物线函数对时间的导数。*183.2 典型输入信号典型输入信号4.4.脉冲函数脉冲函数脉冲函数脉冲函数(见图见图)的时域表达式为的时域表达式为 htththtxi0001)(式中式中,h称为脉冲宽度称为脉冲宽度,脉冲的面积为脉冲的面积为1。若对脉冲若对脉冲
9、的宽度取趋于零的极限的宽度取趋于零的极限,则有则有 000)()(tttxt称此函数为单位脉冲函数称此函数为单位脉冲函数(见图见图)。其拉氏变换的表达式为:其拉氏变换的表达式为:*193.2 典型输入信号典型输入信号5.正弦函数正弦函数正弦函数正弦函数(如图所示)的时域表达式为如图所示)的时域表达式为 tAtxisin)(式中式中,A为振幅为振幅,为角频率为角频率。当当A1时,其拉氏变换的表达式为:时,其拉氏变换的表达式为:6.随机信号随机信号*203.3 一阶系统一阶系统一阶系统:能用一阶微分方程描述的系统称为一阶系统。一阶系统:能用一阶微分方程描述的系统称为一阶系统。(也称为一阶系统的特征
10、参数),表达了一阶系(也称为一阶系统的特征参数),表达了一阶系统本身的与外界作用无关的固有特性。统本身的与外界作用无关的固有特性。*21 如果将该指数曲线衰减到初值的如果将该指数曲线衰减到初值的2(或(或5)之前的过程定义为)之前的过程定义为过渡过程,则可算得相应的时间为过渡过程,则可算得相应的时间为4T(或(或3T)。称此时间()。称此时间(4T/3T)为过渡过程时间或调整时间,记为为过渡过程时间或调整时间,记为ts。由此可见,系统得时间常数由此可见,系统得时间常数T愈小,则过渡过程的持续时间愈短。愈小,则过渡过程的持续时间愈短。这表明系统的惯性愈小,系统对输入信号反应的快速性能愈好。这表明
11、系统的惯性愈小,系统对输入信号反应的快速性能愈好。(注意,在实际应用时,理想的脉冲信号是不可能得到的。)(注意,在实际应用时,理想的脉冲信号是不可能得到的。)3.3 一阶系统一阶系统*223.3 一阶系统一阶系统几点重要说明:几点重要说明:1.在这里有两个重要的点:在这里有两个重要的点:A点点与与0点(点(都与时间常数都与时间常数T有密有密切的关系切的关系)。2.系统的过渡过程时间系统的过渡过程时间ts。*233.3 一阶系统一阶系统一阶系统一阶系统 G(s)的实验求法:的实验求法:通过以上分析可知,若要求用实验方法求一阶系统的传递函数,通过以上分析可知,若要求用实验方法求一阶系统的传递函数,
12、(1)我们就可以先对系统输入一单位阶跃信号,并测出它的响应)我们就可以先对系统输入一单位阶跃信号,并测出它的响应曲线。曲线。(2)然后从响应曲线上找出)然后从响应曲线上找出0.632xou()处所对应点的时间处所对应点的时间t。这个这个t就是系统的时间常数就是系统的时间常数T。或通过找到或通过找到t0时时xou(t)的切线斜率,这个斜率的倒数也是系)的切线斜率,这个斜率的倒数也是系统的时间常数统的时间常数T。(3)再参考再参考 (一阶系统单位脉冲响应函(一阶系统单位脉冲响应函数)数),求出,求出w(t)。)。(4)最后再结合)最后再结合G(s)Lw(t),求得,求得G(s),即得到一阶系),即
13、得到一阶系统的传递函数。统的传递函数。*243.3 一阶系统一阶系统稳态分量稳态分量tT也是一个斜坡也是一个斜坡函数,与输入信号斜率相同,函数,与输入信号斜率相同,但在时间上但在时间上滞后滞后一个时间常一个时间常数数T。Ttctrteettss)()(lim)(lim对于一阶系统的单位斜坡响对于一阶系统的单位斜坡响应,应,说明一阶系统单位斜坡响应在说明一阶系统单位斜坡响应在过渡过程结束后存在常值误差,过渡过程结束后存在常值误差,其值等于时间常数其值等于时间常数T。(跟踪。(跟踪单位斜坡输入信号时,稳态误单位斜坡输入信号时,稳态误差为差为T。)。)*25 对比一阶系统的单位响应、单位阶跃响应和单
14、位对比一阶系统的单位响应、单位阶跃响应和单位斜坡响应,可知道他们之间的关系为:斜坡响应,可知道他们之间的关系为:通过观察其输入信号也有同样的关系。通过观察其输入信号也有同样的关系。因此,在此一并指出:因此,在此一并指出:一个输入信号导数的时域一个输入信号导数的时域响应等于该输入信号时域响应的导数;响应等于该输入信号时域响应的导数;一个输入信号一个输入信号积分的时域响应等于该输入信号时域响应的积分积分的时域响应等于该输入信号时域响应的积分。基于上述性质,对于线性定常系统,只需讨论一基于上述性质,对于线性定常系统,只需讨论一种典型信号的响应,就可以推知另一种信号。种典型信号的响应,就可以推知另一种
15、信号。3.3 一阶系统一阶系统*263.3 一阶系统一阶系统例例1:已知某线性定常系统的单位斜坡响应为:已知某线性定常系统的单位斜坡响应为:试求其单位阶跃响应和单位脉冲响应函数。试求其单位阶跃响应和单位脉冲响应函数。解:解:因为单位阶跃函数、单位脉冲函数分别为单位斜坡函数的一因为单位阶跃函数、单位脉冲函数分别为单位斜坡函数的一阶和二阶导数,阶和二阶导数,故系统的单位阶跃响应和单位脉冲响应函数分别故系统的单位阶跃响应和单位脉冲响应函数分别为单位斜坡响应的一阶和二阶导数为单位斜坡响应的一阶和二阶导数。即:即:单位阶跃响应为:单位阶跃响应为:单位脉冲响应为:单位脉冲响应为:*273.3 一阶系统一阶
16、系统11.010/1001.01/100)(ssssG11001/1/1001/100)(ssssG3.01.010033Tts例例2:2:一阶系统如图所示,试求系统单位阶跃响应的调一阶系统如图所示,试求系统单位阶跃响应的调节时间节时间t ts s,如果要求,如果要求t ts s=0.1=0.1秒,试问系统的反馈系数应秒,试问系统的反馈系数应如何调整?如何调整?解:解:系统的闭环传递函数为:系统的闭环传递函数为:这是一个典型一阶系统,调节时间这是一个典型一阶系统,调节时间t ts s=3T=0.3=3T=0.3秒。秒。若要求调节时间若要求调节时间t ts s=0.1=0.1秒,可设反馈系数为秒
17、,可设反馈系数为,则系统的闭环传递,则系统的闭环传递函数为:函数为:s1000.1Xo(s)Xo(s)Xi(s)Xi(s)*28例例3 3:已知某元部件的传递函数为:已知某元部件的传递函数为:,12.010)(ssG6.02.03st11012.010110)12.0/(101)12.0/(10)(1)()()(000sKKKsKsKKsGsGKsXsXHHHHio02.01012.010101100HHKKK109.00KKH)(sGKH-Xo(s)Xo(s)Xi(s)Xi(s)K0解:解:原系统的调节时间为原系统的调节时间为引入负反馈后,系统的传递函数为:引入负反馈后,系统的传递函数为:若
18、将调节时间减至原来的若将调节时间减至原来的0.10.1倍,但倍,但总放大系数保持不变,则:总放大系数保持不变,则:采用图示方法引入负反馈,将调节时间减至原来的采用图示方法引入负反馈,将调节时间减至原来的0.1倍,但总倍,但总放大系数保持不变,试选择放大系数保持不变,试选择KH、K0的值。的值。3.3 一阶系统一阶系统*293.4 二阶系统二阶系统(的时域分析)的时域分析)凡是以凡是以二阶微分方程二阶微分方程作为运动方程的控制系统:作为运动方程的控制系统:称之为二阶系统。称之为二阶系统。一般控制系统均为高阶系统,但在一定准确度一般控制系统均为高阶系统,但在一定准确度条件下,可以忽略某些次要因素近
19、似的用一个二阶条件下,可以忽略某些次要因素近似的用一个二阶系统来表示。系统来表示。也就是说,在一定条件下,高阶系统一般也可也就是说,在一定条件下,高阶系统一般也可以近似用二阶系统的以近似用二阶系统的性能指标性能指标来表征。来表征。*303.4 二阶系统二阶系统(的时域分析)的时域分析)一、二阶系统的各种状态一、二阶系统的各种状态 典型的二阶系统结构图如图所示,它是一个由惯性典型的二阶系统结构图如图所示,它是一个由惯性环节和积分环节串联组成前向通道的单位负反馈系统。环节和积分环节串联组成前向通道的单位负反馈系统。212210)()()(KKssKKsXsXsGi系统闭环传递函数为系统闭环传递函数
20、为:令令,221nKKn21则系统闭环传递函数化则系统闭环传递函数化为如下标准形式:为如下标准形式:22202)()()(nnnisssXsXsG式中式中,称为阻尼比称为阻尼比,n称为无阻尼自然振荡角频率。称为无阻尼自然振荡角频率。二阶系统结构图二阶系统结构图*31因此,系统结构图可因此,系统结构图可化简为如下图所示:化简为如下图所示:所以所以,系统的两个特征根系统的两个特征根(极点极点)为为 122,1nns0222nnss二阶系统的特征方程为:二阶系统的特征方程为:二阶系统结构简图二阶系统结构简图随着阻尼比随着阻尼比 取值不同取值不同,二阶系统特征根二阶系统特征根(极点极点)也不相同。也不
21、相同。3.4 二阶系统二阶系统(的时域分析)的时域分析)*3222,11nnjs是一对共轭复数根是一对共轭复数根,如图所示。如图所示。1.欠阻尼状态欠阻尼状态(0 1)当当0 1时时,两特征根为两特征根为 3.4 二阶系统二阶系统(的时域分析)的时域分析)二阶系统闭环极点分布二阶系统闭环极点分布*333.4 二阶系统二阶系统(的时域分析)的时域分析)2.临界阻尼状态临界阻尼状态(=1)当当 =1时时,特征方程有两个特征方程有两个相同的负实根相同的负实根,即即 s1,2=-n如图所示。如图所示。二阶系统闭环极点分布二阶系统闭环极点分布*343.4 二阶系统二阶系统(的时域分析)的时域分析)122
22、,1nns为两个不同的负实根为两个不同的负实根,如图如图所示:所示:3.过阻尼状态过阻尼状态(1)当当 1时时,两特征根为:两特征根为:二阶系统闭环极点分布二阶系统闭环极点分布*35二阶系统闭环极点分布二阶系统闭环极点分布 3.4 二阶系统二阶系统(的时域分析)的时域分析)njs2,1如图所示如图所示:4.4.无阻尼状态无阻尼状态(=0)当当 =0时时,特征方程有特征方程有一对一对共轭纯虚数根共轭纯虚数根,即即:*363.4 二阶系统二阶系统(的时域分析)的时域分析)记:记:称称 为二阶系统的有阻尼固有频率为二阶系统的有阻尼固有频率*373.4 二阶系统二阶系统(的时域分析)的时域分析)*38
23、3.4 二阶系统二阶系统(的时域分析)的时域分析)当当 取不同值,二阶欠取不同值,二阶欠阻尼系统的单位脉冲响应如阻尼系统的单位脉冲响应如图所示。图所示。欠阻尼系统的单位脉冲欠阻尼系统的单位脉冲响应曲线是减幅的正玹振荡响应曲线是减幅的正玹振荡曲线,且曲线,且 愈小,衰减愈慢,愈小,衰减愈慢,振荡频率振荡频率 愈大。故欠阻尼愈大。故欠阻尼系统又称为二阶振荡系统,系统又称为二阶振荡系统,其幅值衰减的快慢取决其幅值衰减的快慢取决于于 ,因为其因为其倒数倒数称为时称为时间衰减常数,记为间衰减常数,记为 。nwdw*393.4 二阶系统二阶系统(的时域分析)的时域分析)1*403.4 二阶系统二阶系统(的
24、时域分析)的时域分析)由 式,有:1*413.4 二阶系统二阶系统(的时域分析)的时域分析)*423.4 二阶系统二阶系统(的时域分析)的时域分析)由图可知,当由图可知,当 1时,二时,二阶系统的过渡过程具有单调上升阶系统的过渡过程具有单调上升的特性。的特性。从过渡过程的持续时间来看,从过渡过程的持续时间来看,在在无振荡无振荡单调上升的曲线中,在单调上升的曲线中,在 1时的过渡时间时的过渡时间ts最短。最短。在在欠阻尼系统欠阻尼系统中,当中,当 0.40.8时,不仅其过渡过程时间比时,不仅其过渡过程时间比 1时的更短,而且振荡不太严重。时的更短,而且振荡不太严重。*43 因此,一般希望二阶系统
25、工作在因此,一般希望二阶系统工作在 0.40.8的欠阻尼状态,的欠阻尼状态,因为这个工作状态有一个因为这个工作状态有一个振荡特性适度振荡特性适度而且而且过渡过程过渡过程持续时间又较持续时间又较短。短。3.4 二阶系统二阶系统(的时域分析)的时域分析)在根据给定的性能指标设计系统时,将一阶系统与二阶系统在根据给定的性能指标设计系统时,将一阶系统与二阶系统相比,通常选择二阶系统。这是因为二阶系统容易得到相比,通常选择二阶系统。这是因为二阶系统容易得到较短的过较短的过渡过程时间渡过程时间(ts),并且也能同时满足对振荡性能的要求。,并且也能同时满足对振荡性能的要求。而且而且决定过渡过程特性决定过渡过
展开阅读全文