分形几何学的新特例与物理新思维增补版A课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《分形几何学的新特例与物理新思维增补版A课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 几何学 特例 物理 新思维 增补 课件
- 资源描述:
-
1、1分形几何学的新例与物理学新思维(增补版)毛志彤江都市2011-4-222目录1.维度2.线域分形3.面域分形4.体域分形旧例5.体域分形新例6.体域耦合复分形7.电磁态8.基本粒子结构9.分形微分几何与超弦发展3n1.维度A1.维度的数学含义B1.维度的几何学含义C1.笛卡尔坐标的维度D1.黎曼几何坐标维度E1.罗巴切夫斯对几何解析F1.维度的定义域G1.周向维度域H1.维度值的计算方式I1.维度与分形逻辑4A1.维度的数学含义我们普遍将对一种序的归类方式称为维度例如:思维-分析问题的途径和方法所以这就涉及到归类和计量(单位和量)数学上将这种考虑归类和计量的方式实际作为维度,这里有明显标注的
2、和不明显表示的例如:自然数序,小数位数,几何形状与角度,几何形状与边数,几何形状与其中的封闭环路的拓扑路径。5B1.维度的几何学含义空间序的逻辑概念。空间的位置和结构的关系的逻辑;空间量的逻辑概念,空间的迭代方式和迭代层次;空间的域的定义特征,是有限域还是无限域的逻辑;空间域的拓扑性,空间连续性或分裂性的逻辑;空间的对易关系的逻辑性,例如:对于地球表面一点他的重力势能在一个维度上有序对另外两个维度不对易,同时在同一高度上,或该点的水平面两个维度完全对易。6C1.笛卡尔坐标的维度直线(射线)与直线构成平面;以直线与平面为基础的坐标空间;一般空间是限定在三维以内;如果不加以额外定义其维度是对易;在
3、空间的域定义为无限的空间;空间向量是有原点的;空间无限包括向量正和向量负无限;空间在域内连续的;空间域是平移对易和旋转对易的;空间可定义域值;空间域值可积分可微分;空间连续可导;7D1.黎曼几何坐标维度在逻辑曲面上有以坐标原点;在点极限附近的n维极限空间;N维极限空间的对易性或不对易;空间域内可导性;N维空间维度的正交性;n维同一层次空间(不被定义为分形维度);在极限域的对第n维空间的n-1维空间的可导性同理对第n-k维度,n-k-1维空间可导;同理也是微分几何的空间基础;由曲面的曲率决定其可以退化为欧氏几何。黎曼(18261866)8黎曼几何简介黎曼流形上的几何学。德国数学家G.F.B.黎曼
4、19世纪中期提出的几何学理论。1854年黎曼在格丁根大学发表的题为论作为几何学基础的假设的就职演说,通常被认为是黎曼几何学的源头。在这篇演说中,黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧几里得空间中的一个几何实体。他首先发展了空间的概念,提出了几何学研究的对象应是一种多重广义量,空间中的点可用n个实数(x1,xn)作为坐标来描述。这是现代n维微分流形的原始形式,为用抽象空间描述自然现象奠定了基础。这种空间上的几何学应基于无限邻近两点(x1,x2,xn)与(x1dx1,xndxn)之间的距离,用微分弧长度平方所确定的正定二次型理解度量。亦即(gij)是由函数构成的正定对称矩阵。这
5、便是黎曼度量。赋予黎曼度量的微分流形,就是黎曼流形。9几何结构黎曼认识到度量只是加到流形上的一种结构,并且在同一流形上可以有许多不同的度量。黎曼以前的数学家仅知道三维欧几里得空间E3中的曲面S上存在诱导度量ds2Edu22FdudvGdv2,即第一基本形式,而并未认识到S还可以有独立于三维欧几里得几何赋予的度量结构。黎曼意识到区分诱导度量和独立的黎曼度量的重要性,从而摆脱了经典微分几何曲面论中局限于诱导度量的束缚,创立了黎曼几何学,为近代数学和物理学的发展作出了杰出贡献。黎曼几何以欧几里得几何和种种非欧几何作为其特例。例如:定义度量(a是常数),则当a0时是普通的欧几里得几何,当a0时,就是椭
6、圆几何,而当a0时为双曲几何。10李群与黎曼几何李群与黎曼几何黎曼几何中的一个基本问题是微分形式的等价性问题。该问题大约在1869年前后由E.B.克里斯托费尔和R.李普希茨等人解决。前者的解包含了以他的姓命名的两类克里斯托费尔记号和协变微分概念。在此基础上G.里奇发展了张量分析方法,这在广义相对论中起了基本数学工具的作用。他们进一步发展了黎曼几何学。但在黎曼所处的时代,李群以及拓扑学还没有发展起来,因此黎曼几何只限于小范围的理论。大约在1925年H.霍普夫才开始对黎曼空间的微分结构与拓扑结构的关系进行了研究。随着微分流形精确概念的确立,特别是E.嘉当在20世纪20年代开创并发展了外微分形式与活
7、动标架法,建立了李群与黎曼几何之间的联系,从而为黎曼几何的发展奠定重要基础,并开辟了广阔的园地,影响极其深远。并由此发展了线性联络及纤维丛的研究。11爱因斯坦与黎曼几何爱因斯坦与黎曼几何1915年,A.爱因斯坦运用黎曼几何和张量分析工具创立了新的引力理论广义相对论。使黎曼几何(严格地说洛伦兹几何)及其运算方法(里奇算法)成为广义相对论研究的有效数学工具。而相对论近年的发展则受到整体微分几何的强烈影响。例如矢量丛和联络论构成规范场(杨-米尔斯场)的数学基础。1944年陈省身给出n维黎曼流形高斯-博内公式的内蕴证明,以及他关于埃尔米特流形的示性类的研究,引进了后来通称的陈示性类,为大范围微分几何提
8、供了不可缺少的工具并为复流形的微分几何与拓扑研究开创了先河。半个多世纪,黎曼几何的研究从局部发展到整体,产生了许多深刻的结果。黎曼几何与偏微分方程、多复变函数论、代数拓扑学等学科互相渗透,相互影响,在现代数学和理论物理学中有重大作用。12欧式几何与黎曼几何比较欧式几何与黎曼几何比较欧式几何是把认识停留在平面上了,所研究的范围是绝对的平的问题,认为人生活在一个绝对平的世界里。因此在平面里画出的三角形三条边都是直的。两点之间的距离也是直的。但是假如我们生活的空间是一个双曲面,(不是双曲线),这个双曲面,我们可以把它想象成一口平滑的锅或太阳罩,我们就在这个双曲面里画三角形,这个三角形的三边的任何点都
9、绝对不能离开双曲面,我们将发现这个三角形的三边无论怎么画都不会是直线,那么这样的三角形就是罗氏三角形,经过论证发现,任何罗氏三角形的内角和都永远小于180度,无论怎么画都不能超出180度,但是当把这个双曲面渐渐展开时,一直舒展成绝对平的面,这时罗氏三角形就变成了欧式三角形,也就是我们在初中学的平面几何,其内角和自然是180度。13比较之二在平面上,两点间的最短距离是线段,但是在双曲面上,两点间的最短距离则是曲线,因为平面上的最短距离在平面上,那么曲面上的最短距离也只能在曲面上,而不能跑到曲面外抻直,故这个最短距离只能是曲线。若我们把双曲面舒展成平面以后,再继续朝平面的另一个方向变,则变成了椭圆
10、面或圆面,这个时候,如果我们在这个椭圆面上画三角形,将发现,无论怎么画,这个三角形的内角和都大于180度,两点间的最短距离依然是曲线,这个几何就是黎曼几何。这个几何在物理上非常有用,因为光在空间上就是沿着曲线跑的,并非是直线,我们生活在地球上,因此我们的空间也是曲面,而不是平面,但为了生活方便,都不做严格规定,都近似地当成了平面。14E1.罗巴切夫斯对几何解析罗巴切夫斯基 对黎曼几何学的公理系统和欧氏几何学不同的地方仅仅是把欧氏几何中“一对分散直线在其唯一公垂线两侧无限远离”这一几何平行公理用“从直线外一点,至少可以做两条直线和这条直线平行”来代替,其他公理基本相同。由于平行公理不同,经过演绎
11、推理却引出了一连串和欧式几何内容不同的新的几何命题。罗氏尤其在双曲面的研究深刻。15F1.维度的定义域如果说笛卡尔坐标系的域是无限域,那么黎曼几何的域就是极限域,但实际还有一种几何体系-分形几何体系他的几何域是分形域,以前人们普遍重视维度数,实际几何的核心与数学的沟通关键不仅维度数更在于维度域,域本身也是一种维度,如果在这一维度上“域”与空间和时间都相互关联,这是基本的。如果你研究的是线段,那么可以说是线域;研究的是面性,那么可以说是面域;研究的是体形,那就说是定义体域 。16G1.周向维度域维度域有射线、直线段、曲线段、圆周线;维度域有平面、曲面-特例球面域;维度域有立方、环域。在几何中最典
12、型的域上述,实际上有域才有维度的空间条件域-几何的元素集对于分形几何的域可能是与上述略有不同的分形域,这有我们后面所特别研究的无限螺旋分形域 表征几何空间的基础是域,而不仅是其中维度数。17H1.维度值的计算方式对于复杂的几何形体,普通维数的概念可能随尺度不同而改对于复杂的几何形体,普通维数的概念可能随尺度不同而改变。例如,直径变。例如,直径10厘米的球用厘米的球用1毫米粗的细线做成。从远处毫米粗的细线做成。从远处看,球是一点。看,球是一点。离离10厘米远,线球是三维的。厘米远,线球是三维的。在在10毫米处,它是一维线团。毫米处,它是一维线团。在在1毫米处,每根线变成了圆柱体,整体又一次变成一
13、维,毫米处,每根线变成了圆柱体,整体又一次变成一维,如此等等,维数如此等等,维数“交叉交叉”反复从一个值到另一个值。反复从一个值到另一个值。当球用有限数目像原子那么小的微物代表时,它变成零当球用有限数目像原子那么小的微物代表时,它变成零维。维。对于分形,和普通维数(对于分形,和普通维数(0,1,2,3)相对应的维数称为)相对应的维数称为分形维数。分形维数。维度几何含义中积分乘法和微分除法的基础是因子即标度规维度几何含义中积分乘法和微分除法的基础是因子即标度规范。乘除的几何含义有正交或垂直逻辑。因此无限分形螺旋范。乘除的几何含义有正交或垂直逻辑。因此无限分形螺旋闭合环耦合空间的粒子结构其分形满足
14、规范正交或垂直。闭合环耦合空间的粒子结构其分形满足规范正交或垂直。18维维(Dimension)是空间和客体的重要几何参量是空间和客体的重要几何参量.分形集的三分形集的三个要素是形状个要素是形状,概率概率,维数维数.而分形图形的分数维比其形状和概而分形图形的分数维比其形状和概率来更易描述分形集合的不规整度或破碎度率来更易描述分形集合的不规整度或破碎度.通常是用一种近似公式来计算分形集的分数维通常是用一种近似公式来计算分形集的分数维:D=lna/lnb其中其中D是分形图形集的分数维数是分形图形集的分数维数,a 是自相似的概率分片数是自相似的概率分片数,b是伸缩率是伸缩率.即一个有界集合可以分成即
15、一个有界集合可以分成a 个大小为个大小为1/b 倍的倍的与原集相似的子集与原集相似的子集.对对Koch曲线来说曲线来说,首次是把它分成首次是把它分成4个部分个部分,每个部分都为每个部分都为原来大小的原来大小的1/3,而每一部分又可以同样地继续再细分而每一部分又可以同样地继续再细分.于是于是Koch曲线的分数维曲线的分数维D(Koch)之之a=4,b=3.则则D=ln4/ln3=1.2619Sierpinski三角形三角形 其其 a=3,b=2,于是于是 D=ln3/ln2=1.58519I1.维度与分形逻辑计算几何的集合元素的量与表征元素单位的是维度的要素也是分形的逻辑基础;自然分形的重要单位
16、支、节、层、阶,这些单位是具有特定规范的相似方式,或者说是分形方式,空间的规范逻辑都是这种规范方式的典型化和形式化。结构是规范的范式。经典的几何逻辑在分形几何中所以规范型,包括欧氏几何、黎曼几何、罗氏几何。20n2.线域分形A2.英国海岸线的几何数学问题B2.Koch雪花图像曲线曲线C2.八卦的分形D2.Cantor 集E2.PeanoCurve F2.H线分形G2.HilbertCurve 希尔伯特曲线H2.LevyCurve I2.电解吸附分布21A2.英国海岸线的几何数学问题曼德尔布罗20世纪70年代提出“分形几何”概念,所撰写大自然的分形几何一书1982年出版,在数学界乃至流行文化领域
17、掀起一股“分形热”。就整体而言,分形几何图形处处不规则,例如海岸线和山川形状从远距离看存在不规则。就不同尺度而言,分形几何图形的规则性相同,例如海岸线和山川形状从近距离看,局部形态与整体形态相似。曼德尔布罗所作开创性研究有助于人们测量一些先前难以测量的物体,例如云团或海岸线。他的研究成果应用于物理、生物、金融等各项领域,而不规则图形设计理念甚至影响流行文化。2010年10月14日,“分形几何之父”伯努瓦曼德尔布罗在美国马萨诸塞州剑桥辞世,享年85岁。伯努瓦曼德尔布罗(Benoit B.Mandelbrot)世界“分形几何之父”,出生于波兰,童年时随家人移居法国,后来在美国担任耶鲁大学名誉教授。
18、221967年年Mandelbrot提出了提出了“英国的海岸线有多长?英国的海岸线有多长?”的的问题。问题。长度与测量单位有关,以长度与测量单位有关,以1km为单位测量海岸线,就会为单位测量海岸线,就会将短于将短于1km的迂回曲折长度忽略掉;若以的迂回曲折长度忽略掉;若以1m为单位测量,为单位测量,则能测出被忽略掉的迂回曲折,长度将变大;若测量单则能测出被忽略掉的迂回曲折,长度将变大;若测量单位进一步地变小,测得的长度就会愈来愈大,这些愈来位进一步地变小,测得的长度就会愈来愈大,这些愈来愈大的长度将趋近于一个确定值,这个极限值就是海岸愈大的长度将趋近于一个确定值,这个极限值就是海岸线的长度。线
19、的长度。Mandelbrot发现:当测量单位变小时,所得的长度是无发现:当测量单位变小时,所得的长度是无限增大的。他认为海岸线的长度是不确定的,或者说,限增大的。他认为海岸线的长度是不确定的,或者说,在一定意义上海岸线是无限长的。这就是因为海岸线是在一定意义上海岸线是无限长的。这就是因为海岸线是极不规则和极不光滑的。极不规则和极不光滑的。我们知道,经典几何研究规则图形,平面解析几何研究我们知道,经典几何研究规则图形,平面解析几何研究一次和二次曲线,微分几何研究光滑的曲线和曲面,传一次和二次曲线,微分几何研究光滑的曲线和曲面,传统上将自然界大量存在的不规则形体规则化再进行处理,统上将自然界大量存
20、在的不规则形体规则化再进行处理,我们将海岸线折线化,得出一个有意义的长度。我们将海岸线折线化,得出一个有意义的长度。23图示Mandelbrot突破了这一点,长突破了这一点,长度也许已不能正确概括海岸线度也许已不能正确概括海岸线这类不规则图形的特征。海岸这类不规则图形的特征。海岸线虽然很复杂,却有一个重要线虽然很复杂,却有一个重要的性质的性质自相似性。自相似性。从不同比例尺的地形图上,我从不同比例尺的地形图上,我们可以看出海岸线的形状大体们可以看出海岸线的形状大体相同,其曲折、复杂程度是相相同,其曲折、复杂程度是相似的。海岸线的任一小部分都似的。海岸线的任一小部分都包含有与整体相同的相似的细包
21、含有与整体相同的相似的细节。节。24B2.Koch雪花图像曲线曲线Koch 雪花图形Von Koch(1870-1924)25C2.八卦的分形中国古代的分形哲学“混沌”思想二分法则多维度统一体系耦合平衡循环观太极八卦图2627D2.Cantor 集德國數學家 Cantor 於 1883 年提出了 Cantor Set,這是一組數量無窮的線段集合,但是總長度卻為零。基本上,Cantor set 是一組介於 0 與 1 之間數量無限的小線段(點)集合。產生 Cantor Set 的方法如下:第零步驟:畫出一條範圍 0,1 線段(線段長度 L1)第一步驟:再把中間那一段拿掉,剩下左右兩邊長度各為 1
22、/3 的線段 0,1/3 與 2/3,1(此時,L(2/3)1)第二步驟:將剩下的每一個線段都重複第一步驟(此時,L(2/3)2)第三步驟:重複第二步驟(此時,L(2/3)3)接下來的步驟,即重複地疊代下去(此時,L(2/3)n)28E2.PeanoCurve 產生 Peano Curve 的方法如下:第零步驟:畫出一條線段第一步驟:分成三等份,依照下圖的第一步驟所示而變化,其中每一個線段都是在端點上互相結合的,而並非交錯分割第二步驟:將曲線中的每一個線段都重複第一步驟第三步驟:重複第二步驟接下來的步驟,即重複地疊代下去 29F2.有限分形与无限分形自然界中分形也存在有限域无限的问题,以我们重
23、点描述的无限螺旋闭合环结构为例,在环阶更大的空间,分形是有界的,但耦合场却变为无限,在分形微分时,当分形维度趋向无限,分形域将变为极限零,这种奇妙的逻辑让人费解,这到底是有限的,还是无限的,也许这是基本粒子的内在特性,分形以这种方式作为基本粒子的存在。30G2.HilbertCurve 希尔伯特曲线1891 年的 David Hilbert 提出了一種能夠填滿平面的曲線,我們稱作 Hilbert Curve,這個曲線比 Peano Curve 更吸引了數學家們的目光,因為它能夠不相交錯的方式通過平面每一個分割單元,這種特性被用來處理影像分割的問題。31H2.LevyCurve 32I2.电解吸
24、附分布电化学的吸附过程,其生长方式与一种电磁导向及随机概率有关,所以呈现如图示的成长方式33n3.面域分形A3.A3.SierpinskiSierpinski三角和方毯三角和方毯B3.Mondelbrot集集C3.Julia集集D3.PythagoreanTrees F3.叶中管脉络面分布G3.地图河流分布道路分布34A3.A3.SierpinskiSierpinski三角和方毯三角和方毯波蘭著名的數學家 Waclaw Sierpinski 於 1916 年提出了 Sierpinski Gasket 的圖形 產生 Sierpinski Gasket 的方法如下:零步驟:畫出實心的正三角形第一步
25、驟:將三角形每一邊的中點連線,會分割成四個小正三角形,我們把中央的正三角形拿掉,會剩下其餘的三個正三角形第二步驟:將每一個實心的小角形都重複第一步驟第三步驟:重複第二步驟接下來的步驟,即重複地疊代下去35B3.Mondelbrot集集Mandelbrot集集Mandelbrot集是集是Julia集的延伸和集的延伸和扩展扩展.Mandelbrot集有非常复杂的集有非常复杂的结构结构,其特征是由一个主要的心脏形其特征是由一个主要的心脏形结构和一系列圆盘形的结构和一系列圆盘形的“芽苞芽苞”突突起连接在一起起连接在一起,每个每个“芽苞芽苞”又被更又被更细小的细小的“芽苞芽苞”所环绕所环绕,依此类推依此
展开阅读全文