中考冲刺:图表信息型问题-知识讲解(提高).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《中考冲刺:图表信息型问题-知识讲解(提高).doc》由用户(一斤白开水)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 冲刺 图表 信息 问题 知识 讲解 提高 下载 _二轮专题_中考复习_数学_初中
- 资源描述:
-
1、中考冲刺:图表信息型问题知识讲解(提高)责编:常春芳【中考展望】 图表信息题是指通过图形、图象或图表及一定的文字说明来提供问题情景的一类试题,它是近几年全国各省市中考所展示的一种新题型,这类试题形式多样,取材广泛,可增加试题的灵活性和趣味性,其发展前景非常广阔用好题中提供的信息,有利于提高学生分析、解决简单实际问题的能力,同时也是培养现代公民素质的一条重要途径【方法点拨】1图象信息题 题型特点:这类题是中考试卷中出现频率较高的题型之一,它是通过图象呈现问题中两个变量之间的数量关系,主要考查学生对函数思想和数形结合思想的掌握程度 解题策略:解答这类问题,在弄清题意的基础上,弄清两坐标轴所代表的含
2、义,并对图象的形状、位置、发展变化趋势等捕捉提炼有效信息,解决相关问题2图表信息题 图表信息题是指通过图表的形式提供信息,这些信息一般以数据形式居多,其主要考查学生对图表数据的分析、比较、判断和结论的归纳能力,要求学生有较强的定量分析和定性概括能力图表信息题是中考常见的一种题型,它是通过图象、图形及表格等形式给出信息的一种新题型,在解决图表信息题的时候要注意以下几点:1、细读图表:(1)注重整体阅读.先对材料或图表资料等有一个整体的了解,把握大体方向.要通过整体阅读,搜索有效信息;(2)重视数据变化.数据的变化往往说明了某项问题,而这可能正是这个材料的重要之处;(3)注意图表细节.图表中一些细
3、节不能忽视,它往往起提示作用,如图表下的“注”“数字单位”等.2、审清要求:图表题往往对答题有一定的要求,根据考题要求进行回答,才能有的放矢.题目要求包往往括字数句数限制、比较对象、变化情况等.3、准确表达解答图表题需要用简明的语言进行概括.解答前,要正确分析图表中所列内容的相互联系,从中找出规律性的东西,再归纳概括为一个结论.在表述时要有具体的数据比较、分析,要客观地反映图表包含的信息,特别要注意题目中的特殊限制.【典型例题】类型一、图象信息题1(2016烟台)如图,O的半径为1,AD,BC是O的两条互相垂直的直径,点P从点O出发(P点与O点不重合),沿OCD的路线运动,设AP=x,sinA
4、PB=y,那么y与x之间的关系图象大致是()AB CD【思路点拨】根据题意分1x与x2两种情况,确定出y与x的关系式,即可确定出图象【答案】C.【答案与解析】解:当P在OC上运动时,根据题意得:sinAPB=,OA=1,AP=x,sinAPB=y,xy=1,即y=(1x),当P在上运动时,APB=AOB=45,此时y=(x2),图象为:故选C【总结升华】此题考查了动点问题的函数图象,列出y与x的函数关系式是解本题的关键2(福鼎市期中)甲、乙两人骑车前往A地,他们距A地的路程S(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)
5、求甲距A地的路程S与行驶时间t的函数关系式(3)直接写出在什么时间段内乙比甲距离A地更近?(用不等式表示)【思路点拨】(1)分别利用利用总路程除以总时间求出速度即可;(2)利用待定系数法求出函数解析式即可;(3)利用函数图象确定乙比甲距离A地更近时的时间即可【答案与解析】解:(1)v甲=30(km/h),v乙=20(km/h);(2)设甲的函数关系式为S=kt+b,把(0,50),(2.5,0)代入解得:,解得:,关系式为:S=20t+50;(3)由图象可得出:当1t2.5时,乙比甲距离A地更近【总结升华】此题考查了学生从图象中读取信息的能力学会利用数形结合来解答问题举一反三:【高清课堂:图表
6、信息型问题 例4】【变式】如图,已知抛物线P:y=ax+bx+c(a0) 与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:(1) 求A、B、C三点的坐标;(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=kDF,若点M不在抛物线P上,求k的取值范围. 【答案】解: 解法一:设 ,任取x,y的三组值代入,求出解析式, 令y=0,求出;令x=0,得y=-
7、4, A、B、C三点的坐标分别是A(2,0),B(-4,0),C(0,-4) . 解法二:由抛物线P过点(1,-),(-3,)可知,抛物线P的对称轴方程为x=-1,又 抛物线P过(2,0)、(-2,-4),则由抛物线的对称性可知,点A、B、C的坐标分别为 A(2,0),B(-4,0),C(0,-4) . 由题意,而AO=2,OC=4,AD=2-m,故DG=4-2m, 又 ,EF=DG,得BE=4-2m, DE=3m,SDEFG=DGDE=(4-2m) 3m=12m-6m2 (0m2) . 注:也可通过解RtBOC及RtAOC,或依据BOC是等腰直角三角形建立关系求解. SDEFG=12m-6m
8、2 (0m2),m=1时,矩形的面积最大,且最大面积是6 .当矩形面积最大时,其顶点为D(1,0),G(1,-2),F(-2,-2),E(-2,0),设直线DF的解析式为y=kx+b,易知,k=,b=-,又可求得抛物线P的解析式为:, 令=,可求出x=. 设射线DF与抛物线P相交于点N,则N的横坐标为,过N作x轴的垂线交x轴于H,有=, 点M不在抛物线P上,即点M不与N重合时,此时k的取值范围是k且k0. 类型二、图表信息题3为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”)某班同学于6月上旬的一天在某超市门口采用问卷调查的方式,
展开阅读全文